CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$ |
Xingyu Wang1,2, Dongliang Gong1, Bo Liu1,2, Xiaoyan Ma1,2, Jinyu Zhao1,2, Pengyu Wang1,2, Yutao Sheng1,2, Jing Guo1,3, Liling Sun1,2,3, Wen Zhang4,5, Xinchun Lai5, Shiyong Tan5*, Yi-feng Yang1,2,3*, and Shiliang Li1,2,3* |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China 5Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
|
|
Cite this article: |
Xingyu Wang, Dongliang Gong, Bo Liu et al 2022 Chin. Phys. Lett. 39 107101 |
|
|
Abstract We investigate the uniaxial-pressure dependence of resistivity for URu$_{2-x}$Fe$_x$Si$_2$ samples with $x = 0$ and 0.2, which host a hidden order (HO) and a large-moment antiferromagnetic (LMAFM) phase, respectively. For both samples, the elastoresistivity $\zeta$ shows a seemingly divergent behavior above the transition temperature $T_0$ and a quick decrease below it. We find that the temperature dependence of $\zeta$ for both samples can be well described by assuming the uniaxial pressure effect on the gap or certain energy scale except for $\zeta_{(110)}$ of the $x = 0$ sample, which exhibits a nonzero residual value at 0 K. We show that this provides a qualitative difference between the HO and LMAFM phases. Our results suggest that there is an in-plane anisotropic response to the uniaxial pressure that only exists in the hidden order state without necessarily breaking the rotational lattice symmetry.
|
|
Received: 22 June 2022
Published: 20 September 2022
|
|
PACS: |
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
74.70.Tx
|
(Heavy-fermion superconductors)
|
|
72.15.Eb
|
(Electrical and thermal conduction in crystalline metals and alloys)
|
|
|
|
|
[1] | Palstra T T M, Menovsky A A, Berg J V D, Dirkmaat A J, Kes P H, Nieuwenhuys G J, and Mydosh J A 1985 Phys. Rev. Lett. 55 2727 |
[2] | Maple M B, Chen J W, Dalichaouch Y, Kohara T, Rossel C, Torikachvili M S, McElfresh M W, and Thompson J D 1986 Phys. Rev. Lett. 56 185 |
[3] | Schlabitz W, Baumann J, Pollit B, Rauchschwalbe U, Mayer H M, Ahlheim U, and Bredl C D 1986 Z. Phys. B - Condens. Matter 62 171 |
[4] | Mydosh J A and Oppeneer P M 2011 Rev. Mod. Phys. 83 1301 |
[5] | Mydosh J A and Oppeneer P M 2014 Philos. Mag. 94 3642 |
[6] | Mydosh J A, Oppeneer P M, and Riseborough P S 2020 J. Phys.: Condens. Matter 32 143002 |
[7] | Broholm C, Kjems J K, Buyers W J L, Matthews P, Palstra T T M, Menovsky A A, and Mydosh J A 1987 Phys. Rev. Lett. 58 1467 |
[8] | Okazaki R, Shibauchi T, Shi H J, Haga Y, Matsuda T D, Yamamoto E, Onuki Y, Ikeda H, and Matsuda Y 2011 Science 331 439 |
[9] | Tonegawa S, Kasahara S, Fukuda T, Sugimoto K, Yasuda N, Tsuruhara Y, Watanabe D, Mizukami Y, Haga Y, Matsuda T D, Yamamoto E, Onuki Y, Ikeda H, Matsuda Y, and Shibauchi T 2014 Nat. Commun. 5 4188 |
[10] | Riggs S C, Shapiro M C, Maharaj A V, Raghu S, Bauer E D, Baumbach R E, Giraldo-Gallo P, Wartenbe M, and Fisher I R 2015 Nat. Commun. 6 6425 |
[11] | Kambe S, Tokunaga Y, Sakai H, and Walstedt R E 2015 Phys. Rev. B 91 035111 |
[12] | Chu J H, Kuo H H, Analytis J G, and Fisher I R 2012 Science 337 710 |
[13] | Kuo H H, Chu J H, Kivelson S A, and Fisher I R 2016 Science 352 958 |
[14] | Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Kasahara S, Matsuda Y, and Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139 |
[15] | Liu Z, Gu Y, Zhang W, Gong D, Zhang W, Xie T, Lu X, Ma X, Zhang X, Zhang R, Zhu J, Ren C, Shan L, Qiu X, Dai P, Yang Y F, Luo H, and Li S 2016 Phys. Rev. Lett. 117 157002 |
[16] | Gu Y, Liu Z, Xie T, Zhang W, Gong D, Hu D, Ma X, Li C, Zhao L, Lin L, Xu Z, Tan G, Chen G, Meng Z Y, Yang Y F, Luo H, and Li S 2017 Phys. Rev. Lett. 119 157001 |
[17] | Tabata C, Inami T, Michimura S, Yokoyama M, Hidaka H, Yanagisawa T, and Amitsuka H 2014 Philos. Mag. 94 3691 |
[18] | Kambe S, Tokunaga Y, Sakai H, Hattori T, Higa N, Matsuda T D, Haga Y, Walstedt R E, and Harima H 2018 Phys. Rev. B 97 235142 |
[19] | Choi J, Ivashko O, Dennler N, Aoki D, von Arx K, Gerber S, Gutowski O, Fischer M H, Strempfer J, v Zimmermann M, and Chang J 2018 Phys. Rev. B 98 241113 |
[20] | Wang L, He M, Hardy F, Aoki D, Willa K, Flouquet J, and Meingast C 2020 Phys. Rev. Lett. 124 257601 |
[21] | Amitsuka H, Sato M, Metoki N, Yokoyama M, Kuwahara K, Sakakibara T, Morimoto H, Kawarazaki S, Miyako Y, and Mydosh J A 1999 Phys. Rev. Lett. 83 5114 |
[22] | Jeffries J R, Butch N P, Yukich B T, and Maple M B 2007 Phys. Rev. Lett. 99 217207 |
[23] | Jo Y J, Balicas L, Capan C, Behnia K, Lejay P, Flouquet J, Mydosh J A, and Schlottmann P 2007 Phys. Rev. Lett. 98 166404 |
[24] | Motoyama G, Yokoyama N, Sumiyama A, and Oda Y 2008 J. Phys. Soc. Jpn. 77 123710 |
[25] | Butch N P, Jeffries J R, Chi S, Le A J B, Lynn J W, and Maple M B 2010 Phys. Rev. B 82 060408 |
[26] | Hassinger E, Knebel G, Matsuda T D, Aoki D, Taufour V, and Flouquet J 2010 Phys. Rev. Lett. 105 216409 |
[27] | Kanchanavatee N, Janoschek M, Baumbach R E, Hamlin J J, Zocco D A, Huang K, and Maple M B 2011 Phys. Rev. B 84 245122 |
[28] | Das P, Kanchanavatee N, Helton J S, Huang K, Baumbach R E, Bauer E D, White B D, Burnett V W, Maple M B, Lynn J W, and Janoschek M 2015 Phys. Rev. B 91 085122 |
[29] | Hall J S, Movassagh M R, Wilson M N, Luke G M, Kanchanavatee N, Huang K, Janoschek M, Maple M B, and Timusk T 2015 Phys. Rev. B 92 195111 |
[30] | Wolowiec C T, Kanchanavatee N, Huang K, Ran S, and Maple M B 2016 Phys. Rev. B 94 085145 |
[31] | Ran S, Wolowiec C T, Jeon I, Pouse N, Kanchanavatee N, White B D, Huang K, Martien D, DaPron T, Snow D, Williamsen M, Spagna S, Riseborough P S, and Maple M B 2016 Proc. Natl. Acad. Sci. USA 113 13348 |
[32] | Frantzeskakis E, Dai J, Bareille C, Rödel T C, Güttler M, Ran S, Kanchanavatee N, Huang K, Pouse N, Wolowiec C T, Rienks E D L, Lejay P, Fortuna F, Maple M B, and Santander-Syro A F 2021 Proc. Natl. Acad. Sci. USA 118 e2020750118 |
[33] | Williams T J, Barath H, Yamani Z, Rodriguez-Riviera J A, Le A J B, Garrett J D, Luke G M, Buyers W J L, and Broholm C 2017 Phys. Rev. B 95 195171 |
[34] | Eiling A and Schilling J S 1981 J. Phys. F 11 623 |
[35] | Schoenes J, Schönenberger C, Franse J J M, and Menovsky A A 1987 Phys. Rev. B 35 5375 |
[36] | Dawson A L, Datars W R, Garrett J D, and Razavi F S 1989 J. Phys.: Condens. Matter 1 6817 |
[37] | Yang Y F, Fisk Z, Lee H O, Thompson J D, and Pines D 2008 Nature 454 611 |
[38] | Bouvier M, Lethuillier P, and Schmitt D 1991 Phys. Rev. B 43 13137 |
[39] | Gong D, Xie T, Lu X, Ren C, Shan L, Zhang R, Dai P, Yang Y F, Luo H, and Li S 2016 Phys. Rev. B 93 134520 |
[40] | Song P, Zhu K, Yang F, Wei Y, Zhang L, Yang H, Sheng X L, Qi Y, Ni J, Li S, Li Y, Cao G, Meng Z Y, Li W, Shi Y, and Li S 2021 Phys. Rev. B 103 L241114 |
[41] | McElfresh M W, Thompson J D, Willis J O, Maple M B, Kohara T, and Torikachvili M S 1987 Phys. Rev. B 35 43 |
[42] | Yokoyama M, Amitsuka H, Watanabe K, Kawarazaki S, Yoshizawa H, and Mydosh J A 2002 J. Phys. Soc. Jpn. 71 264 |
[43] | Ren X, Duan L, Hu Y, Li J, Zhang R, Luo H, Dai P, and Li Y 2015 Phys. Rev. Lett. 115 197002 |
[44] | Haule K and Kotliar G 2009 Nat. Phys. 5 796 |
[45] | Cricchio F, Bultmark F, Grånäs O, and Nordström L 2009 Phys. Rev. Lett. 103 107202 |
[46] | Ikeda H, Suzuki M T, Arita R, Takimoto T, Shibauchi T, and Matsuda Y 2012 Nat. Phys. 8 528 |
[47] | Rau J G and Kee H Y 2012 Phys. Rev. B 85 245112 |
[48] | Hsu C H and Chakravarty S 2014 Phys. Rev. B 90 134507 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|