Chin. Phys. Lett.  2022, Vol. 39 Issue (10): 105201    DOI: 10.1088/0256-307X/39/10/105201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Observation and Simulation of $n=1$ Reversed Shear Alfvén Eigenmode on the HL-2A Tokamak
P. W. Shi1, Y. R. Yang2, W. Chen1, Z. B. Shi1*, Z. C. Yang1, L. M. Yu1, T. B. Wang1, X. X. He1, X. Q. Ji1, W. L. Zhong1, M. Xu1, and X. R. Duan1
1Southwestern Institute of Physics, Chengdu 610041, China
2State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China
Cite this article:   
P. W. Shi, Y. R. Yang, W. Chen et al  2022 Chin. Phys. Lett. 39 105201
Download: PDF(17417KB)   PDF(mobile)(17422KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A branch of high-frequency Alfvénic modes is observed on the HL-2A tokamak. The electromagnetic mode can be driven unstably in the plasma with an off-axis neutral beam heating. Its mode frequency keeps almost unchanged or presents a slow-sweeping behavior, depending on the detail current evolution. The poloidal and toroidal mode numbers are $m/n=1/1$. The mode has a quite short duration ($\leq$20 ms) and usually appears 5–10 ms after the neutral beam being injected into the plasma. Hybrid simulations based on M3D-K have also been carried out. The result suggests that co-passing energetic particles are responsible for the mode excitation. The simulated mode structures are localized nearby location of minimum safety factor ($q_{\rm min}$) and agree with the structures obtained through tomography of soft x-ray arrays. Further, the modes are localized in the continuum gap and their frequencies increase with variation of $q_{\rm min}$ in a wide range. Last but not least, the characteristic of unchanged frequency on experiment is also reproduced by the nonlinear simulation with a fixed safety factor. All those evidences indicate that the $n=1$ high-frequency mode may belong to a reversed shear Alfvén eigenmode.
Received: 06 July 2022      Editors' Suggestion Published: 20 September 2022
PACS:  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.35.Bj (Magnetohydrodynamic waves (e.g., Alfven waves))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/10/105201       OR      https://cpl.iphy.ac.cn/Y2022/V39/I10/105201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
P. W. Shi
Y. R. Yang
W. Chen
Z. B. Shi
Z. C. Yang
L. M. Yu
T. B. Wang
X. X. He
X. Q. Ji
W. L. Zhong
M. Xu
and X. R. Duan
[1] Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008
[2] Chen W and Wang Z X 2020 Chin. Phys. Lett. 37 125001
[3] Wong K L et al. 1991 Phys. Rev. Lett. 66 1874
[4] Yang S X et al. 2018 Nucl. Fusion 58 046016
[5] Qiu Z et al. 2018 Phys. Rev. Lett. 120 135001
[6] Wang J et al. 2020 Nucl. Fusion 60 112012
[7] Berk H L et al. 2001 Phys. Rev. Lett. 87 185002
[8] Sharapov S E et al. 2002 Phys. Plasmas 9 2027
[9] Wang T et al. 2020 Nucl. Fusion 60 126032
[10] Van Zeeland M A et al. 2006 Nucl. Fusion 46 S880
[11] Van Zeeland M A et al. 2016 Nucl. Fusion 56 112007
[12] Heidbrink W W et al. 1993 Phys. Rev. Lett. 71 855
[13] Chen W et al. 2010 Phys. Rev. Lett. 105 185004
[14] Marchenko V et al. 2009 Nucl. Fusion 49 022002
[15] Heidbrink W W et al. 2002 Nucl. Fusion 42 972
[16] Yu L M et al. 2022 Europhys. Lett. 138 54002
[17] Levinton F M et al. 1995 Phys. Rev. Lett. 75 4417
[18] García-Muñoz M et al. 2010 Phys. Rev. Lett. 104 185002
[19] Fredrickson E D et al. 2006 Nucl. Fusion 46 S926
[20] Fredrickson E D et al. 2013 Nucl. Fusion 53 013006
[21] Zhu X L et al. 2022 Nucl. Fusion 62 016012
[22] Fisch N J and Herrmann M 1994 Nucl. Fusion 34 1541
[23] Fasoli A et al. 2002 Plasma Phys. Control. Fusion 44 B159
[24] Shi P W et al. 2021 Chin. Phys. Lett. 38 035202
[25] Fredrickson E D et al. 1996 Phys. Plasmas 3 2620
[26] Bierwage A et al. 2013 Nucl. Fusion 53 073007
[27] ITER physics expert group on energetic particles, heating and current drive 1999 Nucl. Fusion 39 2471
[28] Gryaznevich M P and SharapovS E 2006 Nucl. Fusion 46 S942
[29] Nagayama Y et al. 1992 Phys. Rev. Lett. 69 2376
[30] Chen W et al. 2016 Nucl. Fusion 56 036018
[31] Chen W et al. 2014 Nucl. Fusion 54 104002
[32] Yang Y R et al. 2020 Nucl. Fusion 60 106012
[33] Chen W et al. 2014 Europhys. Lett. 107 25001
[34] Shi P W et al. 2021 Nucl. Fusion 61 096025
[35] Shi P W et al. 2019 Nucl. Fusion 59 066015
[36] Shi P W et al. 2017 Phys. Plasmas 24 042509
[37] Podetà M et al. 2010 Phys. Plasmas 17 122501
[38] Liu L et al. 2020 J. Plasma Fusion Res. 15 242055
[39] Dux R et al. 2003 J. Nucl. Mater. 313 1150
[40] Yuan B S et al. 2018 Fusion Eng. Des. 134 5
[41] Testa D et al. 2005 Nucl. Fusion 45 907
[42] Breizman B N and Pekker M S 2005 Phys. Plasmas 12 112506
[43] Xie H S and Xiao Y et al. 2015 Phys. Plasmas 22 022518
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 105201
[2] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 105201
[3] Liming Yu, Wei Chen, Xiaoquan Ji, Peiwan Shi, Xuantong Ding, Zhongbing Shi, Ruirui Ma, Yumei Hou, Yonggao Li, Jiaxian Li, Jianyong Cao, Wulyu Zhong, Min Xu, and Xuru Duan. Observation of Multiple Broadband Alfvénic Chirping Modes in HL-2A NBI Plasmas[J]. Chin. Phys. Lett., 2021, 38(5): 105201
[4] Xiao-Bo Zhang , Xin Qiao , Ai-Xia Zhang , and Ju-Kui Xue. Generation of a Plasma Waveguide with Slow-Wave Structure[J]. Chin. Phys. Lett., 2021, 38(4): 105201
[5] Yumei Hou, Wei Chen, Liming Yu , Yunpeng Zou , Min Xu , and Xuru Duan . Nonlinear Simulations of the Bump-on-Tail Instabilities in Tokamak Plasmas[J]. Chin. Phys. Lett., 2021, 38(4): 105201
[6] Shizhao Wei, Yahui Wang, Peiwan Shi, Wei Chen, Ningfei Chen, and Zhiyong Qiu. Nonlinear Coupling of Reversed Shear Alfvén Eigenmode and Toroidal Alfvén Eigenmode during Current Ramp[J]. Chin. Phys. Lett., 2021, 38(3): 105201
[7] Pei-Wan Shi, Wei Chen, and Xu-Ru Duan. Energetic Particle Physics on the HL-2A Tokamak: A Review[J]. Chin. Phys. Lett., 2021, 38(3): 105201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 105201
[9] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 105201
[10] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 105201
[11] L. Z. Kahlon, I. Javaid. Formation of Nonlinear Solitary Vortical Structures by Coupled Electrostatic Drift and Ion-Acoustic Waves[J]. Chin. Phys. Lett., 2017, 34(12): 105201
[12] A. Lysenko, I. Volk, A. Serozhko, O. Rybalko. Forming of Space Charge Wave with Broad Frequency Spectrum in Helical Relativistic Two-Stream Electron Beams[J]. Chin. Phys. Lett., 2017, 34(7): 105201
[13] E. F. EL-Shamy. Nonlinear Propagation of Positron-Acoustic Periodic Travelling Waves in a Magnetoplasma with Superthermal Electrons and Positrons[J]. Chin. Phys. Lett., 2017, 34(6): 105201
[14] Song Chai, Yu-Hong Xu, Zhe Gao, Wen-Hao Wang, Yang-Qing Liu, Yi Tan. Nonlinear Energy Cascading in Turbulence during the Internal Reconnection Event at the Sino-United Spherical Tokamak[J]. Chin. Phys. Lett., 2017, 34(2): 105201
[15] Guo-Bo Zhang, N. A. M. Hafz, Yan-Yun Ma, Lie-Jia Qian, Fu-Qiu Shao, Zheng-Ming Sheng. Laser Wakefield Acceleration Using Mid-Infrared Laser Pulses[J]. Chin. Phys. Lett., 2016, 33(09): 105201
Viewed
Full text


Abstract