Chin. Phys. Lett.  2022, Vol. 39 Issue (10): 107101    DOI: 10.1088/0256-307X/39/10/107101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$
Xingyu Wang1,2, Dongliang Gong1, Bo Liu1,2, Xiaoyan Ma1,2, Jinyu Zhao1,2, Pengyu Wang1,2, Yutao Sheng1,2, Jing Guo1,3, Liling Sun1,2,3, Wen Zhang4,5, Xinchun Lai5, Shiyong Tan5*, Yi-feng Yang1,2,3*, and Shiliang Li1,2,3*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
5Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
Cite this article:   
Xingyu Wang, Dongliang Gong, Bo Liu et al  2022 Chin. Phys. Lett. 39 107101
Download: PDF(3869KB)   PDF(mobile)(4140KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the uniaxial-pressure dependence of resistivity for URu$_{2-x}$Fe$_x$Si$_2$ samples with $x = 0$ and 0.2, which host a hidden order (HO) and a large-moment antiferromagnetic (LMAFM) phase, respectively. For both samples, the elastoresistivity $\zeta$ shows a seemingly divergent behavior above the transition temperature $T_0$ and a quick decrease below it. We find that the temperature dependence of $\zeta$ for both samples can be well described by assuming the uniaxial pressure effect on the gap or certain energy scale except for $\zeta_{(110)}$ of the $x = 0$ sample, which exhibits a nonzero residual value at 0 K. We show that this provides a qualitative difference between the HO and LMAFM phases. Our results suggest that there is an in-plane anisotropic response to the uniaxial pressure that only exists in the hidden order state without necessarily breaking the rotational lattice symmetry.
Received: 22 June 2022      Published: 20 September 2022
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  74.70.Tx (Heavy-fermion superconductors)  
  72.15.Eb (Electrical and thermal conduction in crystalline metals and alloys)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/39/10/107101       OR      https://cpl.iphy.ac.cn/Y2022/V39/I10/107101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xingyu Wang
Dongliang Gong
Bo Liu
Xiaoyan Ma
Jinyu Zhao
Pengyu Wang
Yutao Sheng
Jing Guo
Liling Sun
Wen Zhang
Xinchun Lai
Shiyong Tan
Yi-feng Yang
and Shiliang Li
[1] Palstra T T M, Menovsky A A, Berg J V D, Dirkmaat A J, Kes P H, Nieuwenhuys G J, and Mydosh J A 1985 Phys. Rev. Lett. 55 2727
[2] Maple M B, Chen J W, Dalichaouch Y, Kohara T, Rossel C, Torikachvili M S, McElfresh M W, and Thompson J D 1986 Phys. Rev. Lett. 56 185
[3] Schlabitz W, Baumann J, Pollit B, Rauchschwalbe U, Mayer H M, Ahlheim U, and Bredl C D 1986 Z. Phys. B - Condens. Matter 62 171
[4] Mydosh J A and Oppeneer P M 2011 Rev. Mod. Phys. 83 1301
[5] Mydosh J A and Oppeneer P M 2014 Philos. Mag. 94 3642
[6] Mydosh J A, Oppeneer P M, and Riseborough P S 2020 J. Phys.: Condens. Matter 32 143002
[7] Broholm C, Kjems J K, Buyers W J L, Matthews P, Palstra T T M, Menovsky A A, and Mydosh J A 1987 Phys. Rev. Lett. 58 1467
[8] Okazaki R, Shibauchi T, Shi H J, Haga Y, Matsuda T D, Yamamoto E, Onuki Y, Ikeda H, and Matsuda Y 2011 Science 331 439
[9] Tonegawa S, Kasahara S, Fukuda T, Sugimoto K, Yasuda N, Tsuruhara Y, Watanabe D, Mizukami Y, Haga Y, Matsuda T D, Yamamoto E, Onuki Y, Ikeda H, Matsuda Y, and Shibauchi T 2014 Nat. Commun. 5 4188
[10] Riggs S C, Shapiro M C, Maharaj A V, Raghu S, Bauer E D, Baumbach R E, Giraldo-Gallo P, Wartenbe M, and Fisher I R 2015 Nat. Commun. 6 6425
[11] Kambe S, Tokunaga Y, Sakai H, and Walstedt R E 2015 Phys. Rev. B 91 035111
[12] Chu J H, Kuo H H, Analytis J G, and Fisher I R 2012 Science 337 710
[13] Kuo H H, Chu J H, Kivelson S A, and Fisher I R 2016 Science 352 958
[14] Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Kasahara S, Matsuda Y, and Shibauchi T 2016 Proc. Natl. Acad. Sci. USA 113 8139
[15] Liu Z, Gu Y, Zhang W, Gong D, Zhang W, Xie T, Lu X, Ma X, Zhang X, Zhang R, Zhu J, Ren C, Shan L, Qiu X, Dai P, Yang Y F, Luo H, and Li S 2016 Phys. Rev. Lett. 117 157002
[16] Gu Y, Liu Z, Xie T, Zhang W, Gong D, Hu D, Ma X, Li C, Zhao L, Lin L, Xu Z, Tan G, Chen G, Meng Z Y, Yang Y F, Luo H, and Li S 2017 Phys. Rev. Lett. 119 157001
[17] Tabata C, Inami T, Michimura S, Yokoyama M, Hidaka H, Yanagisawa T, and Amitsuka H 2014 Philos. Mag. 94 3691
[18] Kambe S, Tokunaga Y, Sakai H, Hattori T, Higa N, Matsuda T D, Haga Y, Walstedt R E, and Harima H 2018 Phys. Rev. B 97 235142
[19] Choi J, Ivashko O, Dennler N, Aoki D, von Arx K, Gerber S, Gutowski O, Fischer M H, Strempfer J, v Zimmermann M, and Chang J 2018 Phys. Rev. B 98 241113
[20] Wang L, He M, Hardy F, Aoki D, Willa K, Flouquet J, and Meingast C 2020 Phys. Rev. Lett. 124 257601
[21] Amitsuka H, Sato M, Metoki N, Yokoyama M, Kuwahara K, Sakakibara T, Morimoto H, Kawarazaki S, Miyako Y, and Mydosh J A 1999 Phys. Rev. Lett. 83 5114
[22] Jeffries J R, Butch N P, Yukich B T, and Maple M B 2007 Phys. Rev. Lett. 99 217207
[23] Jo Y J, Balicas L, Capan C, Behnia K, Lejay P, Flouquet J, Mydosh J A, and Schlottmann P 2007 Phys. Rev. Lett. 98 166404
[24] Motoyama G, Yokoyama N, Sumiyama A, and Oda Y 2008 J. Phys. Soc. Jpn. 77 123710
[25] Butch N P, Jeffries J R, Chi S, Le A J B, Lynn J W, and Maple M B 2010 Phys. Rev. B 82 060408
[26] Hassinger E, Knebel G, Matsuda T D, Aoki D, Taufour V, and Flouquet J 2010 Phys. Rev. Lett. 105 216409
[27] Kanchanavatee N, Janoschek M, Baumbach R E, Hamlin J J, Zocco D A, Huang K, and Maple M B 2011 Phys. Rev. B 84 245122
[28] Das P, Kanchanavatee N, Helton J S, Huang K, Baumbach R E, Bauer E D, White B D, Burnett V W, Maple M B, Lynn J W, and Janoschek M 2015 Phys. Rev. B 91 085122
[29] Hall J S, Movassagh M R, Wilson M N, Luke G M, Kanchanavatee N, Huang K, Janoschek M, Maple M B, and Timusk T 2015 Phys. Rev. B 92 195111
[30] Wolowiec C T, Kanchanavatee N, Huang K, Ran S, and Maple M B 2016 Phys. Rev. B 94 085145
[31] Ran S, Wolowiec C T, Jeon I, Pouse N, Kanchanavatee N, White B D, Huang K, Martien D, DaPron T, Snow D, Williamsen M, Spagna S, Riseborough P S, and Maple M B 2016 Proc. Natl. Acad. Sci. USA 113 13348
[32] Frantzeskakis E, Dai J, Bareille C, Rödel T C, Güttler M, Ran S, Kanchanavatee N, Huang K, Pouse N, Wolowiec C T, Rienks E D L, Lejay P, Fortuna F, Maple M B, and Santander-Syro A F 2021 Proc. Natl. Acad. Sci. USA 118 e2020750118
[33] Williams T J, Barath H, Yamani Z, Rodriguez-Riviera J A, Le A J B, Garrett J D, Luke G M, Buyers W J L, and Broholm C 2017 Phys. Rev. B 95 195171
[34] Eiling A and Schilling J S 1981 J. Phys. F 11 623
[35] Schoenes J, Schönenberger C, Franse J J M, and Menovsky A A 1987 Phys. Rev. B 35 5375
[36] Dawson A L, Datars W R, Garrett J D, and Razavi F S 1989 J. Phys.: Condens. Matter 1 6817
[37] Yang Y F, Fisk Z, Lee H O, Thompson J D, and Pines D 2008 Nature 454 611
[38] Bouvier M, Lethuillier P, and Schmitt D 1991 Phys. Rev. B 43 13137
[39] Gong D, Xie T, Lu X, Ren C, Shan L, Zhang R, Dai P, Yang Y F, Luo H, and Li S 2016 Phys. Rev. B 93 134520
[40] Song P, Zhu K, Yang F, Wei Y, Zhang L, Yang H, Sheng X L, Qi Y, Ni J, Li S, Li Y, Cao G, Meng Z Y, Li W, Shi Y, and Li S 2021 Phys. Rev. B 103 L241114
[41] McElfresh M W, Thompson J D, Willis J O, Maple M B, Kohara T, and Torikachvili M S 1987 Phys. Rev. B 35 43
[42] Yokoyama M, Amitsuka H, Watanabe K, Kawarazaki S, Yoshizawa H, and Mydosh J A 2002 J. Phys. Soc. Jpn. 71 264
[43] Ren X, Duan L, Hu Y, Li J, Zhang R, Luo H, Dai P, and Li Y 2015 Phys. Rev. Lett. 115 197002
[44] Haule K and Kotliar G 2009 Nat. Phys. 5 796
[45] Cricchio F, Bultmark F, Grånäs O, and Nordström L 2009 Phys. Rev. Lett. 103 107202
[46] Ikeda H, Suzuki M T, Arita R, Takimoto T, Shibauchi T, and Matsuda Y 2012 Nat. Phys. 8 528
[47] Rau J G and Kee H Y 2012 Phys. Rev. B 85 245112
[48] Hsu C H and Chakravarty S 2014 Phys. Rev. B 90 134507
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 107101
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 107101
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 107101
[4] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 107101
[5] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 107101
[6] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 107101
[7] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 107101
[8] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 107101
[9] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 107101
[10] Haiwei Li, Shusen Ye, Jianfa Zhao, Changqing Jin, and Yayu Wang. Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator[J]. Chin. Phys. Lett., 2022, 39(1): 107101
[11] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 107101
[12] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 107101
[13] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 107101
[14] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 107101
[15] Guoxiong Tang, Libin Wen, Hui Xing, Wenjie Liu, Jin Peng, Yu Wang, Yupeng Li, Baijiang Lv, Yusen Yang, Chao Yao, Yueshen Wu, Hong Sun, Zhu-An Xu, Zhiqiang Mao, and Ying Liu. Structural Domain Imaging and Direct Determination of Crystallographic Orientation in Noncentrosymmetric Ca$_{3}$Ru$_{2}$O$_{7}$ Using Polarized Light Reflectance[J]. Chin. Phys. Lett., 2020, 37(10): 107101
Viewed
Full text


Abstract