CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
High-Performance Visible Light Photodetector Based on BiSeI Single Crystal |
Xiu Yan1,2, Wei-Li Zhen1, Hui-Jie Hu1, Li Pi1,2, Chang-Jin Zhang1,3, and Wen-Ka Zhu1* |
1High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 2University of Science and Technology of China, Hefei 230026, China 3Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
|
|
Cite this article: |
Xiu Yan, Wei-Li Zhen, Hui-Jie Hu et al 2021 Chin. Phys. Lett. 38 068103 |
|
|
Abstract The continuing demand for new optoelectronic devices drives researchers to seek new materials suitable for photodetector applications. Recently, ternary compound semiconductors have entered researchers' field of vision, among which chalcohalides have attracted special interest because of their rich properties and unique crystal structure consisting of atom chains and inter-chain van der Waals gaps. We have synthesized high-quality BiSeI single crystals with [110]-plane orientation and fabricated a photodetector. The optoelectronic measurements show a pronounced photocurrent signal with outstanding technical parameters, namely high responsivity (3.2 A/W), specific detectivity ($7 \times 10^{10}$ Jones) and external quantum efficiency (622%) for $\lambda = 635$ nm, $V_{\rm ds} = 0.1$ V and $P_{\rm opt} = 0.23$ mW/cm$^{2}$. The high performance of BiSeI photodetector and its layer structure make it a promising candidate for low-dimensional optoelectronic applications.
|
|
Received: 20 February 2021
Published: 25 May 2021
|
|
PACS: |
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
85.60.-q
|
(Optoelectronic devices)
|
|
85.30.-z
|
(Semiconductor devices)
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300404), the National Natural Science Foundation of China (Grant No. 11874363, 11974356, and U1932216), and the Collaborative Innovation Program of Hefei Science Center, CAS (Grant No. 2019HSC-CIP002). |
|
|
[1] | Wang J, Han J, Chen X, and Wang X 2019 InfoMat 1 33 |
[2] | Luo W et al. 2018 Nano Lett. 18 5439 |
[3] | Long M, Wang P, Fang H, and Hu W 2019 Adv. Funct. Mater. 29 1803807 |
[4] | Weng S et al. 2020 Phys. Status Solidi RRL 14 2000085 |
[5] | Li C et al. 2020 Light: Sci. & Appl. 9 31 |
[6] | Zhu T, Yang Y, Zheng L, Liu L, Becker M L, and Gong X 2020 Adv. Funct. Mater. 30 1909487 |
[7] | Li Y, Wang X, Li G, Wu Y, Pan Y, Xu Y, Chen J, and Lei W 2020 Chin. Phys. Lett. 37 018101 |
[8] | Fatuzzo E, Nitsche R, Harbeke G, Ruppel W, Roetschi H, and Merz W J 1962 Phys. Rev. 127 2036 |
[9] | Berlincourt D, Nitsche R, Merz W J, and Jaffe H 1964 Appl. Phys. Lett. 4 61 |
[10] | Rosenthal T, Doeblinger M, Wagatha P, Gold C, Scheidt E W, Scherer W, and Oeckler O 2011 Z. Anorg. Allg. Chem. 637 2239 |
[11] | Xin J Z, Fu C G, Shi W J, Li G W, Auffermann G, Qi Y P, Zhu T J, Zhao X B, and Felser C 2018 Rare Met. 37 274 |
[12] | Sasaki Y 1965 Jpn. J. Appl. Phys. 4 614 |
[13] | Chepur D V, Bercha D M, Turyanitsa I D, and Slivka V Y 1968 Phys. Status Solidi 30 461 |
[14] | Kunioku H, Higashi M, and Abe R 2016 Sci. Rep. 6 32664 |
[15] | Ganose A M, Butler K T, Walsh A, and Scanlon D O 2016 J. Mater. Chem. A 4 2060 |
[16] | Shi H, Ming W, and Du M 2016 Phys. Rev. B 93 104108 |
[17] | Arivuoli D, Gnanam F D, and Ramasamy P 1987 J. Mater. Sci. 22 981 |
[18] | Teng M K, Balkanski M, Massot M, and Ziolkiewicz M K 1974 Phys. Status Solidi B 62 173 |
[19] | Kanchana G and Arivuoli D 2001 Indian J. Eng. & Mater. Sci. 8 373 |
[20] | Audzijonis A, Gaigalas G, Zigas L, Sereika R, Zaltauskas R, Balnionis D, and Reza A 2009 Phys. Status Solidi B 246 1702 |
[21] | Xiao B, Zhu M, Ji L, Zhang B, Dong J, Yu J, Sun Q, Jie W, and Xu Y 2019 J. Cryst. Growth 517 7 |
[22] | Ganose A M, Matsumoto S, Buckeridge J, and Scanlon D O 2018 Chem. Mater. 30 3827 |
[23] | Yaws C L 1995 in Handbook of Vapor Pressure, edited by C. L. Yaws (Gulf Professional Publishing), p 1 |
[24] | Blaha P, Schwarz K, Sorantin P, and Trickey S B 1990 Comput. Phys. Commun. 59 399 |
[25] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[26] | Fong C Y, Perlov C, and Wooten F 1982 J. Phys. C 15 2605 |
[27] | Davies J E D 1973 J. Inorg. Nucl. Chem. 35 1531 |
[28] | Lan C, Li C, Yin Y, and Liu Y 2015 Nanoscale 7 5974 |
[29] | Ulaganathan R K et al. 2016 Nanoscale 8 2284 |
[30] | Xu W et al. 2020 Nano Res. 13 2091 |
[31] | Ghatak S, Pal A N, and Ghosh A 2011 ACS Nano 5 7707 |
[32] | George G and Krusius J P 1994 J. Lightwave Technol. 12 1387 |
[33] | Sun Z and Chang H 2014 ACS Nano 8 4133 |
[34] | Luo P, Zhuge F, Wang F, Lian L, Liu K, Zhang J, and Zhai T 2019 ACS Nano 13 9028 |
[35] | Lv L, Zhuge F, Xie F, Xiong X, Zhang Q, Zhang N, Huang Y, and Zhai T 2019 Nat. Commun. 10 3331 |
[36] | Guo Q et al. 2016 Nano Lett. 16 4648 |
[37] | Long M et al. 2020 Appl. Phys. Lett. 117 231104 |
[38] | Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H, and Wang D 2007 Nano Lett. 7 1003 |
[39] | Schubert M C, Riepe S, Bermejo S, and Warta W 2006 J. Appl. Phys. 99 114908 |
[40] | Sanchez O L, Lembke D, Kayci M, Radenovic A, and Kis A 2013 Nat. Nanotechnol. 8 497 |
[41] | Yin Z et al. 2012 ACS Nano 6 74 |
[42] | Han X et al. 2021 ACS Appl. Mater. & Interfaces 13 2836 |
[43] | Gu Y, Wang Y, Xia J, and Meng X 2020 Chin. Phys. Lett. 37 048101 |
[44] | Wei Q, Shen B, Chen Y, Xu B, Xia Y, Yin J, and Liu Z 2017 Mater. Lett. 193 101 |
[45] | Ding J, Fang H, Lian Z, Li J, Lv Q, Wang L, Sun J, and Yan Q 2016 CrystEngComm 18 4405 |
[46] | Zang C, Qi X, Ren L, Hao G, Liu Y, Li J, and Zhong J 2014 Appl. Surf. Sci. 316 341 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|