CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
FeSO$_{4}$ as a Novel Li-Ion Battery Cathode |
Jiachao Yang1, Jian Zou1, Chun Luo1, Qiwen Ran1, Xin Wang1, Pengyu Chen1, Chuan Hu1, Xiaobin Niu1, Haining Ji1*, and Liping Wang1,2* |
1School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China 2Tianmu Lake Institute of Advanced Energy Storage Technologies, Changzhou 213300, China
|
|
Cite this article: |
Jiachao Yang, Jian Zou, Chun Luo et al 2021 Chin. Phys. Lett. 38 068201 |
|
|
Abstract FeSO$_{4}$ has the characteristics of low cost and theoretical high energy density (799 W$\cdot$h$\cdot$kg$^{-1}$ with a two-electron reaction), which can meet the demand for next-generation lithium-ion batteries. Herein, FeSO$_{4}$ as a novel high-performance conversion-reaction type cathode is investigated. We use dopamine as a carbon coating source to increase its electronic conductivity. FeSO$_{4}$@C demonstrates a high reversible specific capacity (512 mA$\cdot$h$\cdot$g$^{-1}$) and a superior cycling performance (482 mA$\cdot$h$\cdot$g$^{-1}$ after 250 cycles). In addition, we further study its reaction mechanism. The FeSO$_{4}$ is converted to Fe and Li$_{2}$SO$_{4}$ during lithium ion insertion and the Fe|Li$_{2}$SO$_{4}$ grain boundaries further store additional lithium ions. Our findings are valuable in exploring other new conversion-type lithium ion battery cathodes.
|
|
Received: 17 February 2021
Published: 25 May 2021
|
|
PACS: |
82.45.Fk
|
(Electrodes)
|
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
82.30.-b
|
(Specific chemical reactions; reaction mechanisms)
|
|
|
Fund: Supported by the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2019Z008), and the National Natural Science Foundation of China (Grant No. 52072061). |
|
|
[1] | Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K S, Gaines L, and Anderson P 2019 Nature 575 75 |
[2] | Kim T, Song W, Son D Y, Ono L K, and Qi Y 2019 J. Mater. Chem. A 7 2942 |
[3] | Wang H, Lan X, Huang Y, and Jiang X 2019 Chin. Phys. Lett. 36 098201 |
[4] | Wu M S, Xu B, and Ouyang C Y 2016 Chin. Phys. B 25 018206 |
[5] | Pieczonka N P W, Liu Z, Lu P, Olson K L, Moote J, Powell B R, and Kim J H 2013 J. Phys. Chem. C 117 15947 |
[6] | Lee S, Jeong M, and Cho J 2013 Adv. Energy Mater. 3 1623 |
[7] | Wang L P, Wu Z R, Zou J, Gao P, Niu X B, Li H, and Chen L Q 2019 Joule 3 2086 |
[8] | Chen Y C, Huo M, Liu Y, Chen T, Leng C C, Li Q, Sun Z L, and Song L J 2015 Chin. Phys. Lett. 32 017102 |
[9] | Li W, Dolocan A, Oh P, Celio H, Park S, Cho J, and Manthiram A 2017 Nat. Commun. 8 14589 |
[10] | Nanjundaswamy K S, Padhi A K, Goodenough J B, Okada S, Ohtsuka H, Arai H, and Yamaki J 1996 Solid State Ionics 92 1 |
[11] | Kitajou A, Ishado Y, Inoishi A, and Okada S 2018 Solid State Ionics 326 48 |
[12] | Radha A V, Lander L, Rousse G, Tarascon J M, and Navrotsky A 2015 J. Mater. Chem. A 3 2601 |
[13] | Shirakawa J, Nakayama M, Wakihara M, and Uchimoto Y 2007 J. Phys. Chem. B 111 1424 |
[14] | Schwieger J N, Kraytsberg A, and Ein-Eli Y 2011 J. Power Sources 196 1461 |
[15] | Lu J C, Nishimura S, and Yamada A 2017 Chem. Mater. 29 3597 |
[16] | Manthiram A and Goodenough J B 1989 J. Power Sources 26 403 |
[17] | Wu Q, Xu Y H, and Ju H 2013 Ionics 19 471 |
[18] | Lee Y, Jo C H, Yoo J K, Choi J U, Ko W, Park H, Jo J H, Shin D O, Myung S T, and Kim J 2020 Energy Storage Mater. 24 458 |
[19] | Recham N, Rousse G, Sougrati M T, Chotard J N, Frayret C, Mariyappan S, Melot B C, Jumas J C, and Tarascon J M 2012 Chem. Mater. 24 4363 |
[20] | Sun Y, Liu L, Dong J P, Zhang B, and Huang X J 2011 Chin. Phys. B 20 126101 |
[21] | Recham N, Chotard J N, Dupont L, Delacourt C, Walker W, Armand M, and Tarascon J M 2010 Nat. Mater. 9 68 |
[22] | Subban C V, Ati M, Rousse G, Abakumov A M, Van Tendeloo G, Janot R, and Tarascon J M 2013 J. Am. Chem. Soc. 135 3653 |
[23] | Lander L, Tarascon J M, and Yamada A 2018 Chem. Rec. 18 1394 |
[24] | Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitajima Y, Miyanaga T, and Watanabe I 2005 J. Phys. Chem. B 109 11197 |
[25] | Chen M, Chen L, Hu Z, Liu Q, Zhang B, Hu Y, Gu Q, Wang J L, Wang L Z, Guo X, Chou S L, and Dou S X 2017 Adv. Mater. 29 1605535 |
[26] | Zhong K F, Xia X, Zhang B, Li H, Wang Z X, and Chen L Q 2010 J. Power Sources 195 3300 |
[27] | Zou J, Zhao J, Wang B, Chen S, Chen P, Ran Q, Li L, Wang X, Yao J, Li H, Huang J, Niu X, and Wang L 2020 ACS Appl. Mater. & Interfaces 12 44850 |
[28] | Kim S, Choi J, Bak S M, Sang L, Li Q, Patra A, and Braun P V 2019 Adv. Funct. Mater. 29 1901719 |
[29] | Poizot P, Laruelle S, Grugeon S, and Tarascon J M 2002 J. Electrochem. Soc. 149 A1212 |
[30] | Reddy M V, Yu T, Sow C H, Shen Z X, Lim C T, Rao G V S, and Chowdari B V R 2007 Adv. Funct. Mater. 17 2792 |
[31] | Guo X, Fang X, Mao Y, Wang Z, Wu F, and Chen L 2011 J. Phys. Chem. C 115 3803 |
[32] | Chen C C and Maier J 2018 Nat. Energy 3 102 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|