Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 097401    DOI: 10.1088/0256-307X/37/9/097401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K
Kang Zhao1,2, Qing-Ge Mu1,2, Bin-Bin Ruan1,2,3, Meng-Hu Zhou1,2,3, Qing-Song Yang1,2, Tong Liu1,2, Bo-Jin Pan1,2, Shuai Zhang1,2, Gen-Fu Chen1,2,3, and Zhi-An Ren1,2,3*
1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan et al  2020 Chin. Phys. Lett. 37 097401
Download: PDF(1351KB)   PDF(mobile)(1323KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report superconductivity in a new ternary molybdenum pnictide Rb$_{2}$Mo$_{3}$As$_{3}$, synthesized via the solid state reaction method. Powder x-ray diffraction analysis reveals a hexagonal crystal structure with space group $P\bar{6}m2$ (No. 187), and the refined lattice parameters are $a = 10.431(5)$ Å, $c = 4.460(4)$ Å. SEM images show rod-like grains with good ductility, confirming a quasi-one-dimensional (Q1D) structure. Electrical resistivity and dc magnetic susceptibility characterizations exhibit superconductivity with an onset of $T_{\rm c}=10.5$ K. The upper critical field of Rb$_{2}$Mo$_{3}$As$_{3}$ is estimated to be 28.2 T at zero temperature, providing an evidence of possible unconventional superconductivity. Our recent discovery of MoAs-based superconductors above 10 K provides a unique platform for the study of exotic superconductivity in $4d$ electron systems with Q1D crystal structures.
Received: 17 June 2020      Published: 01 September 2020
PACS:  74.70.Dd (Ternary, quaternary, and multinary compounds)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
  74.70.-b (Superconducting materials other than cuprates)  
Fund: Supported by the National Key Research and Development of China (Grant Nos. 2018YFA0704200 and 2016YFA0300301), the National Natural Science Foundation of China (Grant No. 11774402), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/097401       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/097401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kang Zhao
Qing-Ge Mu
Bin-Bin Ruan
Meng-Hu Zhou
Qing-Song Yang
Tong Liu
Bo-Jin Pan
Shuai Zhang
Gen-Fu Chen
and Zhi-An Ren
[1] Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117
[2] Steglich F, Aarts J, Bredl C D et al. 1979 Phys. Rev. Lett. 43 1892
[3] Bednorz J G and Muller K A 1986 Z. Phys. B: Condens. Matter 64 189
[4] Wu M K, Ashburn J R, Torng C J et al. 1987 Phys. Rev. Lett. 58 908
[5] Kamihara Y, Watanabe T, Hirano M et al. 2008 J. Am. Chem. Soc. 130 3296
[6] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[7] Ren Z A, Lu W, Yang J et al. 2008 Chin. Phys. Lett. 25 2215
[8] Hsu F C, Luo J Y, Yeh K W et al. 2008 Proc. Natl. Acad. Sci. USA 105 14262
[9] Yu J, Liu T, Pan B J et al. 2017 Sci. Bull. 62 218
[10] Chevrel R, Sergent M and Prigent J 1971 J. Solid State Chem. 3 515
[11] Peña O 2015 Physica C 514 95
[12] Okuda K, Kitagawa M, Sakakibara T et al. 1980 J. Phys. Soc. Jpn. 48 2157
[13] Petrović A P, Lortz R, Santi G et al. 2011 Phys. Rev. Lett. 106 017003
[14] Bao J K, Liu J Y, Ma C W et al. 2015 Phys. Rev. X 5 011013
[15] Tang Z T, Bao J K, Liu Y et al. 2015 Phys. Rev. B 91 020506(R)
[16] Tang Z T, Bao J K, Wang Z et al. 2015 Sci. Chin. Mater. 58 16
[17] Mu Q G, Ruan B B, Pan B J et al. 2018 Phys. Rev. Mater. 2 034803
[18] Zhong H, Feng X Y, Chen H et al. 2015 Phys. Rev. Lett. 115 227001
[19] Watson M D, Feng Y, Nicholson C W et al. 2017 Phys. Rev. Lett. 118 097002
[20] Balakirev F F, Kong T, Jaime M et al. 2015 Phys. Rev. B 91 220505(R)
[21] Luo J, Yang J, Zhou R et al. 2019 Phys. Rev. Lett. 123 047001
[22] Wu X X, Yang F, Le C C et al. 2015 Phys. Rev. B 92 104511
[23] Luo J, Wang C, Wang Z et al. 2020 Chin. Phys. B 29 067402
[24] Cao G H and Zhu Z W 2018 Chin. Phys. B 27 107401
[25] Mu Q G, Ruan B B, Pan B J et al. 2017 Phys. Rev. B 96 140504(R)
[26] Liu T, Mu Q G, Pan B J et al. 2017 Europhys. Lett. 120 27006
[27] Taddei K M, Sanjeewa L D, Lei B H et al. 2019 Phys. Rev. B 100 220503(R)
[28] Xiang J J, Yu Y L, Wu S Q et al. 2019 Phys. Rev. Mater. 3 114802
[29] Wu S Q, Cao C and Cao G H 2019 Phys. Rev. B 100 155108
[30] Potel M, Chevrel R and Sergent M 1980 J. Solid State Chem. 35 286
[31] Armici J C, Decroux M, Fischer O et al. 1980 Solid State Commun. 33 607
[32] Petrović A P, Lortz R, Santi G et al. 2010 Phys. Rev. B 82 235128
[33] Mu Q G, Ruan B B, Zhao K et al. 2018 Sci. Bull. 63 952
[34] Zhao K, Mu Q G, Ruan B B et al. 2020 APL Mater. 8 031103
[35] Luo X G and Chen X H 2015 Sci. Chin. Mater. 58 77
[36] Stewart G R 2011 Rev. Mod. Phys. 83 1589
[37] Clogston A M 1962 Phys. Rev. Lett. 9 266
[38] Liu Z X, Chen M Y, Xiang Y et al. 2019 Phys. Rev. B 100 094511
[39] Gurevich A 2003 Phys. Rev. B 67 184515
[40] Wang H, Dong C, Mao Q et al. 2013 Phys. Rev. Lett. 111 207001
Related articles from Frontiers Journals
[1] Peng-Tao Yang, Qing-Xin Dong, Peng-Fei Shan, Zi-Yi Liu, Jian-Ping Sun, Zhi-Ling Dun, Yoshiya Uwatoko, Gen-Fu Chen, Bo-Sen Wang, and Jin-Guang Cheng. Emergence of Superconductivity on the Border of Antiferromagnetic Order in RbMn$_{6}$Bi$_{5}$ under High Pressure: A New Family of Mn-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(6): 097401
[2] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 097401
[3] Hui-Fei Zhai, Bo Lin, Pan Zhang, Hao Jiang, Yu-Ke Li, and Guang-Han Cao. Combined Study of Structural, Magnetic and Transport Properties of Eu$_{0.5}$$Ln$$_{0.5}$BiS$_{2}$F Superconductor[J]. Chin. Phys. Lett., 2021, 38(4): 097401
[4] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Yang Fu , Shaohua Yan , and Hechang Lei. Superconductivity and Normal-State Properties of Kagome Metal RbV$_{3}$Sb$_{5}$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(3): 097401
[5] Jianan Chu, Teng Wang, Han Zhang, Yixin Liu, Jiaxin Feng, Zhuojun Li, Da Jiang, Gang Mu, Zengfeng Di, and Xiaoming Xie. Gap Structure of 12442-Type KCa$_2$(Fe$_{1-x}$Co$_{x}$)$_4$As$_{4}$F$_2$ ($x$ = 0, 0.1) Revealed by Temperature Dependence of Lower Critical Field[J]. Chin. Phys. Lett., 2020, 37(12): 097401
[6] Xiao-Chuan Wang, Jia Yu, Bin-Bin Ruan, Bo-Jin Pan, Qing-Ge Mu, Tong Liu, Kang Zhao, Gen-Fu Chen, Zhi-An Ren. Revisiting the Electron-Doped SmFeAsO: Enhanced Superconductivity up to 58.6K by Th and F Codoping[J]. Chin. Phys. Lett., 2017, 34(7): 097401
[7] ZHU Jun, WANG Zhao-Sheng, WANG Zhen-Yu, HOU Xing-Yuan, LUO Hui-Qian, LU Xing-Ye, LI Chun-Hong, SHAN Lei, WEN Hai-Hu, REN Cong. Doping Induced Gap Anisotropy in Iron-Based Superconductors: a Point-Contact Andreev Reflection Study of BaFe2−xNixAs2 Single Crystals[J]. Chin. Phys. Lett., 2015, 32(07): 097401
[8] Hamidreza Emamipour, Jafar Emamipour. Zero-Bias Conductance versus Potential Strength of Interface in Ferromagnetic Superconductors[J]. Chin. Phys. Lett., 2012, 29(3): 097401
[9] MU Gang, ZENG Bin, CHENG Peng, WANG Zhao-Sheng, FANG Lei, SHEN Bing, SHAN Lei, REN Cong, WEN Hai-Hu. Sizable Residual Quasiparticle Density of States Induced by Impurity Scattering Effect in Ba(Fe1-xCox)2As2 Single Crystals[J]. Chin. Phys. Lett., 2010, 27(3): 097401
[10] ZHENG Ping, CHEN Gen-Fu, LI Zheng, HU Wan-Zheng, DONG Jing, LI Gang, WANG Nan-Lin, LUO Jian-Lin. Magnetoresistance in Parent Pnictide AFe2As2(A=Sr, Ba)[J]. Chin. Phys. Lett., 2009, 26(10): 097401
[11] TAO Qian, SHEN Jing-Qin, LI Lin-Jun, LIN Xiao, LUO Yong-Kang, CAO Guang-Han, XU Zhu-An. Upper Critical Fields and Anisotropy of BaFe1.9Ni0.1As2 Single Crystals[J]. Chin. Phys. Lett., 2009, 26(9): 097401
[12] LI Yu-ke, LIN Xiao, TAO Qian, CHEN Hang, WANG Cao, LI Lin-Jun, LUO Yong-Kang, HE Mi, ZHU Zeng-Wei, CAO Gang-Han, XU Zhu-An. Superconductivity and Transport Properties in Th and F Codoped Sm1-xThxFeAsO1-yFy[J]. Chin. Phys. Lett., 2009, 26(1): 097401
[13] OU Hong-Wei, ZHAO Jia-Feng, ZHANG Yan, SHEN Da-Wei, ZHOU Bo, YANGLe-Xian, HE Cheng, CHEN Fei, XU Min, WU Tao, CHEN Xian-Hui, CHEN Yan, FENG Dong-Lai. Angle Integrated Photoemission Study of SmO0.85F0.15FeAs[J]. Chin. Phys. Lett., 2008, 25(6): 097401
[14] MU Gang, ZHU Xi-Yu, FANG Lei, SHAN Lei, REN Cong, WEN Hai-Hu. Nodal Gap in Fe-Based Layered Superconductor LaO0.9F0.1-δFeAs Probed by Specific Heat Measurements[J]. Chin. Phys. Lett., 2008, 25(6): 097401
[15] ZHAO Song-Rui, SHEN Jing-Qin, XU Zhu-An, Takeya H, Hirata K. Magnetic Pair-Breaking in Y1-xHoxNi2B2C ( x=0, 0.25, 0.5, 0.75) Single Crystals[J]. Chin. Phys. Lett., 2006, 23(4): 097401
Viewed
Full text


Abstract