CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb$_{2}$Mo$_{3}$As$_{3}$ with Superconducting Transition at 10.5 K |
Kang Zhao1,2, Qing-Ge Mu1,2, Bin-Bin Ruan1,2,3, Meng-Hu Zhou1,2,3, Qing-Song Yang1,2, Tong Liu1,2, Bo-Jin Pan1,2, Shuai Zhang1,2, Gen-Fu Chen1,2,3, and Zhi-An Ren1,2,3* |
1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China
|
|
Cite this article: |
Kang Zhao, Qing-Ge Mu, Bin-Bin Ruan et al 2020 Chin. Phys. Lett. 37 097401 |
|
|
Abstract We report superconductivity in a new ternary molybdenum pnictide Rb$_{2}$Mo$_{3}$As$_{3}$, synthesized via the solid state reaction method. Powder x-ray diffraction analysis reveals a hexagonal crystal structure with space group $P\bar{6}m2$ (No. 187), and the refined lattice parameters are $a = 10.431(5)$ Å, $c = 4.460(4)$ Å. SEM images show rod-like grains with good ductility, confirming a quasi-one-dimensional (Q1D) structure. Electrical resistivity and dc magnetic susceptibility characterizations exhibit superconductivity with an onset of $T_{\rm c}=10.5$ K. The upper critical field of Rb$_{2}$Mo$_{3}$As$_{3}$ is estimated to be 28.2 T at zero temperature, providing an evidence of possible unconventional superconductivity. Our recent discovery of MoAs-based superconductors above 10 K provides a unique platform for the study of exotic superconductivity in $4d$ electron systems with Q1D crystal structures.
|
|
Received: 17 June 2020
Published: 01 September 2020
|
|
PACS: |
74.70.Dd
|
(Ternary, quaternary, and multinary compounds)
|
|
74.62.Bf
|
(Effects of material synthesis, crystal structure, and chemical composition)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
|
Fund: Supported by the National Key Research and Development of China (Grant Nos. 2018YFA0704200 and 2016YFA0300301), the National Natural Science Foundation of China (Grant No. 11774402), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000). |
|
|
[1] | Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117 |
[2] | Steglich F, Aarts J, Bredl C D et al. 1979 Phys. Rev. Lett. 43 1892 |
[3] | Bednorz J G and Muller K A 1986 Z. Phys. B: Condens. Matter 64 189 |
[4] | Wu M K, Ashburn J R, Torng C J et al. 1987 Phys. Rev. Lett. 58 908 |
[5] | Kamihara Y, Watanabe T, Hirano M et al. 2008 J. Am. Chem. Soc. 130 3296 |
[6] | Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006 |
[7] | Ren Z A, Lu W, Yang J et al. 2008 Chin. Phys. Lett. 25 2215 |
[8] | Hsu F C, Luo J Y, Yeh K W et al. 2008 Proc. Natl. Acad. Sci. USA 105 14262 |
[9] | Yu J, Liu T, Pan B J et al. 2017 Sci. Bull. 62 218 |
[10] | Chevrel R, Sergent M and Prigent J 1971 J. Solid State Chem. 3 515 |
[11] | Peña O 2015 Physica C 514 95 |
[12] | Okuda K, Kitagawa M, Sakakibara T et al. 1980 J. Phys. Soc. Jpn. 48 2157 |
[13] | Petrović A P, Lortz R, Santi G et al. 2011 Phys. Rev. Lett. 106 017003 |
[14] | Bao J K, Liu J Y, Ma C W et al. 2015 Phys. Rev. X 5 011013 |
[15] | Tang Z T, Bao J K, Liu Y et al. 2015 Phys. Rev. B 91 020506(R) |
[16] | Tang Z T, Bao J K, Wang Z et al. 2015 Sci. Chin. Mater. 58 16 |
[17] | Mu Q G, Ruan B B, Pan B J et al. 2018 Phys. Rev. Mater. 2 034803 |
[18] | Zhong H, Feng X Y, Chen H et al. 2015 Phys. Rev. Lett. 115 227001 |
[19] | Watson M D, Feng Y, Nicholson C W et al. 2017 Phys. Rev. Lett. 118 097002 |
[20] | Balakirev F F, Kong T, Jaime M et al. 2015 Phys. Rev. B 91 220505(R) |
[21] | Luo J, Yang J, Zhou R et al. 2019 Phys. Rev. Lett. 123 047001 |
[22] | Wu X X, Yang F, Le C C et al. 2015 Phys. Rev. B 92 104511 |
[23] | Luo J, Wang C, Wang Z et al. 2020 Chin. Phys. B 29 067402 |
[24] | Cao G H and Zhu Z W 2018 Chin. Phys. B 27 107401 |
[25] | Mu Q G, Ruan B B, Pan B J et al. 2017 Phys. Rev. B 96 140504(R) |
[26] | Liu T, Mu Q G, Pan B J et al. 2017 Europhys. Lett. 120 27006 |
[27] | Taddei K M, Sanjeewa L D, Lei B H et al. 2019 Phys. Rev. B 100 220503(R) |
[28] | Xiang J J, Yu Y L, Wu S Q et al. 2019 Phys. Rev. Mater. 3 114802 |
[29] | Wu S Q, Cao C and Cao G H 2019 Phys. Rev. B 100 155108 |
[30] | Potel M, Chevrel R and Sergent M 1980 J. Solid State Chem. 35 286 |
[31] | Armici J C, Decroux M, Fischer O et al. 1980 Solid State Commun. 33 607 |
[32] | Petrović A P, Lortz R, Santi G et al. 2010 Phys. Rev. B 82 235128 |
[33] | Mu Q G, Ruan B B, Zhao K et al. 2018 Sci. Bull. 63 952 |
[34] | Zhao K, Mu Q G, Ruan B B et al. 2020 APL Mater. 8 031103 |
[35] | Luo X G and Chen X H 2015 Sci. Chin. Mater. 58 77 |
[36] | Stewart G R 2011 Rev. Mod. Phys. 83 1589 |
[37] | Clogston A M 1962 Phys. Rev. Lett. 9 266 |
[38] | Liu Z X, Chen M Y, Xiang Y et al. 2019 Phys. Rev. B 100 094511 |
[39] | Gurevich A 2003 Phys. Rev. B 67 184515 |
[40] | Wang H, Dong C, Mao Q et al. 2013 Phys. Rev. Lett. 111 207001 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|