Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 097301    DOI: 10.1088/0256-307X/37/9/097301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide
Qian Sui1†, Jiaxin Zhang1,2†, Suhua Jin1†, Yunyouyou Xia1, and Gang Li1,3*
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
2Institute for Advanced Study, Tsinghua University, Beijing 100084, China
3ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 200031, China
Cite this article:   
Qian Sui, Jiaxin Zhang, Suhua Jin et al  2020 Chin. Phys. Lett. 37 097301
Download: PDF(1918KB)   PDF(mobile)(1906KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We examine quantum anomalous Hall (QAH) insulators with intrinsic magnetism displaying quantized Hall conductance at zero magnetic fields. The spin-momentum locking of the topological edge stats promises QAH insulators with great potential in device applications in the field of spintronics. Here, we generalize Haldane's model on the honeycomb lattice to a more realistic two-orbital case without the artificial real-space complex hopping. Instead, we introduce an intraorbital coupling, stemming directly from the local spin-orbit coupling (SOC). Our $d_{xy}/d_{x^{2}-y^{2}}$ model may be viewed as a generalization of the bismuthene $p_{x}/p_{y}$-model for correlated $d$-orbitals. It promises a large SOC gap, featuring a high operating temperature. This two-orbital model nicely explains the low-energy excitation and the topology of two-dimensional ferromagnetic iron-halogenides. Furthermore, we find that electronic correlations can drive the QAH states to a $c=0$ phase, in which every band carries a nonzero Chern number. Our work not only provides a realistic QAH model, but also generalizes the nontrivial band topology to correlated orbitals, which demonstrates an exciting topological phase transition driven by Coulomb repulsions. Both the model and the material candidates provide excellent platforms for future study of the interplay between electronic correlations and nontrivial band topology.
Received: 14 June 2020      Published: 01 September 2020
PACS:  73.43.-f (Quantum Hall effects)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
Fund: Supported by the National Key R&D Program of China (Grant No. 2017YFE0131300), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA18010000), the Starting Grant of ShanghaiTech University, and the Program for Professor of Special Appointment (Shanghai Eastern Scholar).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/097301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/097301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qian Sui
Jiaxin Zhang
Suhua Jin
Yunyouyou Xia
and Gang Li
[1] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[4] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405
[5]Berry M V 1984 Proc. R. Soc. London A 392 45
[6] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[7] Po H C, Vishwanath A and Watanabe H 2017 Nat. Commun. 8 50
[8] Watanabe H, Po H C and Vishwanath A 2018 Sci. Adv. 4 eaat8685
[9] Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z, Felser C, Aroyo M I and Bernevig B A 2017 Nature 547 298
[10] Tang F, Po H C, Vishwanath A and Wan X 2019 Nature 566 486
[11] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H and Fang C 2019 Nature 566 475
[12] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z 2019 Nature 566 480
[13] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[14] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[15] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[16] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Science 357 287
[17] Li G, Hanke W, Hankiewicz E M, Reis F, Schäfer J, Claessen R, Wu C and Thomale R 2018 Phys. Rev. B 98 165146
[18] Dominguez F, Scharf B, Li G, Schäfer J, Claessen R, Hanke W, Thomale R and Hankiewicz E M 2018 Phys. Rev. B 98 161407
[19] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[20] Jiang G, Feng Y, Wu W, Li S, Bai Y, Li Y, Zhang Q, Gu L, Feng X, Zhang D, Song C, Wang L, Li W, Ma X C, Xue Q K, Wang Y and He K 2018 Chin. Phys. Lett. 35 076802
[21] Guo Q, Wu Y, Xu L, Gong Y, Ou Y, Liu Y, Li L, Yan Y, Han G, Wang D, Wang L, Long S, Zhang B, Cao X, Yang S, Wang X, Huang Y, Liu T, Yu G, He K and Teng J 2020 Chin. Phys. Lett. 37 057301
[22] Liu Q, Liu C X, Xu C, Qi X L and Zhang S C 2009 Phys. Rev. Lett. 102 156603
[23] Zhu J J, Yao D X, Zhang S C and Chang K 2011 Phys. Rev. Lett. 106 097201
[24] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 1
[25] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[26] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401
[27] Otrokov M M, Klimovskikh I I, Bentmann H, Estyunin D, Zeugner A, Aliev Z S, Gaß S, Wolter A U B, Koroleva A V, Shikin A M, Blanco-Rey M, Hoffmann M, Rusinov I P, Vyazovskaya A Y, Eremeev S V, Koroteev Y M, Kuznetsov V M, Freyse F, Sánchez-Barriga J, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Alfonsov A, Kataev V, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G, Vidal R C, Schatz S, Kißner K, Ünzelmann M, Min C H, Moser S, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A and Chulkov E V 2019 Nature 576 416
[28] Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801
[29] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895
[30] Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W and Xu Y 2019 Sci. Adv. 5 eaaw5685
[31] Zhang J, Wang D, Shi M, Zhu T, Zhang H and Wang J 2020 Chin. Phys. Lett. 37 077304
[32] Pei C, Xia Y, Wu J, Zhao Y, Gao L, Ying T, Gao B, Li N, Yang W, Zhang D, Gou H, Chen Y, Hosono H, Li G and Qi Y 2020 Chin. Phys. Lett. 37 066401
[33] Slater J C and Koster G F 1954 Phys. Rev. 94 1498
[34] Zhang S H and Liu B G 2017 arXiv:1706.08943 [cond-mat.mes-hall]
[35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[37] Sancho M P L, Sancho J M L and Rubio J 1985 J. Phys. F 15 851
[38] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[39] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[40] Sun J, Zhong X, Cui W, Shi J, Hao J, Xu M and Li Y 2020 Phys. Chem. Chem. Phys. 22 3128
[41] Cable J W, Wilkinson M K, Wollan E O and Koehler W C 1962 Phys. Rev. 127 714
[42] Armbruster M, Ludwig T, Rotter H W, Thiele G and Oppermann H 2000 Z. Anorg. Allg. Chem. 626 187
[43] Gregory N W 1951 J. Am. Chem. Soc. 73 472
[44] Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T and Thygesen K S 2018 2D Mater. 5 042002
[45] McGuire M A 2017 Crystals 7 121
Related articles from Frontiers Journals
[1] Tian-Sheng Zeng, Liangdong Hu, and W. Zhu. Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor $\nu=2/5$[J]. Chin. Phys. Lett., 2022, 39(1): 097301
[2] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 097301
[3] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 097301
[4] Na Jiang and Min Lu. Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States[J]. Chin. Phys. Lett., 2020, 37(11): 097301
[5] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 097301
[6] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 097301
[7] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 097301
[8] Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, Sheng-shi Li, Shi-shen Yan. Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides[J]. Chin. Phys. Lett., 2018, 35(8): 097301
[9] Ru Zheng, Rong-Qiang He, Zhong-Yi Lu. An Anderson Impurity Interacting with the Helical Edge States in a Quantum Spin Hall Insulator[J]. Chin. Phys. Lett., 2018, 35(6): 097301
[10] Xia-Yin Liu, Jia-Lu Wang, Wei You, Ting-Ting Wang, Hai-Yang Yang, Wen-He Jiao, Hong-Ying Mao, Li Zhang, Jie Cheng, Yu-Ke Li. Anisotropic Magnetoresistivity in Semimetal TaSb$_2$[J]. Chin. Phys. Lett., 2017, 34(12): 097301
[11] X.-X. Yuan, L. He, S.-T. Wang, D.-L. Deng, F. Wang, W.-Q. Lian, X. Wang, C.-H. Zhang, H.-L. Zhang, X.-Y. Chang, L.-M. Duan. Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator[J]. Chin. Phys. Lett., 2017, 34(6): 097301
[12] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 097301
[13] Xia Dai, Cong-Cong Le, Xian-Xin Wu, Sheng-Shan Qin, Zhi-Ping Lin, Jiang-Ping Hu. Topological Phase in Non-centrosymmetric Material NaSnBi[J]. Chin. Phys. Lett., 2016, 33(12): 097301
[14] Hua-Ling Yu, Zhang-Yin Zhai, Xin-Tian Bian. Integer Quantum Hall Effect in a Two-Orbital Square Lattice with Chern Number $C=2$[J]. Chin. Phys. Lett., 2016, 33(11): 097301
[15] SUN Liang, WAN Shao-Long. Chiral Current in the Lattice Model of Weyl Semimetal[J]. Chin. Phys. Lett., 2015, 32(5): 097301
Viewed
Full text


Abstract