Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 097201    DOI: 10.1088/0256-307X/37/9/097201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material
Han Zhang1,2, Chen Ming2*, Ke Yang3,4, Hao Zeng5, Shengbai Zhang3, and Yi-Yang Sun2*
1School of Materials Science and Engineering, Shandong University, Jinan 250061, China
2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
3Department of Physics, Applied Physics & Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
4School of Physics and Electronics, Hunan University, Changsha 410082, China
5Department of Physics, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
Cite this article:   
Han Zhang, Chen Ming, Ke Yang et al  2020 Chin. Phys. Lett. 37 097201
Download: PDF(2691KB)   PDF(mobile)(3012KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Transparent conducting materials (TCMs) have been widely used in optoelectronic applications such as touchscreens, flat panel displays and thin film solar cells. These applications of TCMs are currently dominated by n-type doped oxides. High-performance p-type TCMs are still lacking due to their low hole mobility or p-type doping bottleneck, which impedes efficient device design and novel applications such as transparent electronics. Here, based on first-principles calculations, we propose chalcogenide perovskite YScS$_{3}$ as a promising p-type TCM. According to our calculations, its optical absorption onset is above 3 eV, which allows transparency to visible light. Its hole conductivity effective mass is 0.48$m_{0}$, which is among the smallest in p-type TCMs, suggesting enhanced hole mobility. It could be doped to p-type by group-II elements on cation sites, all of which yield shallow acceptors. Combining these properties, YScS$_{3}$ holds great promise to enhancing the performance of p-type TCMs toward their n-type counterparts.
Received: 26 August 2020      Published: 28 August 2020
PACS:  72.80.Cw (Elemental semiconductors)  
  71.20.Mq (Elemental semiconductors)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  61.72.uf (Ge and Si)  
Fund: Y.-Y. Sun was supported by the National Natural Science Foundation of China (Grant No. 11774365). C. Ming was supported by the Natural Science Foundation of Shanghai, China (Grant No. 19ZR1421800) and the Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures (Grant No. SKL 201804). H. Zeng was supported by the U.S. NSF (Grant Nos. CBET-1510121 and CBET-1510948). K. Yang and S. Zhang were supported by the U.S. DOE (Grant No. DE-SC0002623).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/097201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/097201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Han Zhang
Chen Ming
Ke Yang
Hao Zeng
Shengbai Zhang
and Yi-Yang Sun
[1] Ellmer K 2012 Nat. Photon. 6 809
[2] Morales-Masis M, De Wolf S, Woods-Robinson R, Ager J W and Ballif C 2017 Adv. Electron. Mater. 3 1600529
[3] Liu H, Avrutin V, Izyumskaya N, Özgür Ü and Morkoç H 2010 Superlattices Microstruct. 48 458
[4] Beyer W, Hüpkes J and Stiebig H 2007 Thin Solid Films 516 147
[5] Zhang S B 2002 J. Phys.: Condens. Matter 14 R881
[6] Wei S H 2004 Comput. Mater. Sci. 30 337
[7] Woods-Robinson R, Han Y, Zhang H, Ablekim T, Khan I, Persson K A and Zakutayev A 2020 Chem. Rev. 120 4007
[8] Brunin G, Ricci F, Ha V A, Rignanese G M and Hautier G 2019 npj Comput. Mater. 5 63
[9] Zhang K H L, Xi K, Blamire M G and Egdell R G 2016 J. Phys.: Condens. Matter 28 383002
[10] Hautier G, Miglio A, Ceder G, Rignanese G M and Gonze X 2013 Nat. Commun. 4 2292
[11] Bhatia A, Hautier G, Nilgianskul T, Miglio A, Sun J, Kim H J, Kim K H, Chen S, Rignanese G M, Gonze X and Suntivich J 2016 Chem. Mater. 28 30
[12]Williamson B A, Buckeridge J, Brown J, Ansbro S, Palgrave R G and Scanlon D O 2016 Chemistry of Materials acs.chemmater.6b03306
[13] Woods-Robinson R, Broberg D, Faghaninia A, Jain A, Dwaraknath S S and Persson K A 2018 Chem. Mater. 30 8375
[14] Youn Y, Lee M, Kim D, Jeong J K, Kang Y and Han S 2019 Chem. Mater. 31 5475
[15] Varley J B, Miglio A, Ha V A, van Setten M J, Rignanese G M and Hautier G 2017 Chem. Mater. 29 2568
[16] Wei L, Xu X, Gurudayal, Bullock J and Ager J W 2019 Chem. Mater. 31 7340
[17] Kormath Madam Raghupathy R, Kühne T D, Felser C and Mirhosseini H 2018 J. Mater. Chem. C 6 541
[18] Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H and Hosono H 1997 Nature 389 939
[19] Sato H, Minami T, Takata S and Yamada T 1993 Thin Solid Films 236 27
[20] Wang Z, Nayak P K, Caraveo-Frescas J A and Alshareef H N 2016 Adv. Mater. 28 3831
[21] Yang C, Knei M, Lorenz M and Grundmann M 2016 Proc. Natl. Acad. Sci. USA 113 12929
[22] Yamada N, Ino R and Ninomiya Y 2016 Chem. Mater. 28 4971
[23] Huang F Q, Liu M L and Yang C 2011 Sol. Energy Mater. Sol. Cells 95 2924
[24] Sun Y Y, Agiorgousis M L, Zhang P and Zhang S 2015 Nano Lett. 15 581
[25] Perera S, Hui H, Zhao C, Xue H, Sun F, Deng C, Gross N, Milleville C, Xu X, Watson D F, Weinstein B, Sun Y Y, Zhang S and Zeng H 2016 Nano Energy 22 129
[26] Gross N, Sun Y Y, Perera S, Hui H, Wei X, Zhang S, Zeng H and Weinstein B A 2017 Phys. Rev. Appl. 8 044014
[27] Niu S, Milam-Guerrero J, Zhou Y, Ye K, Zhao B, Melot B C and Ravichandran J 2018 J. Mater. Res. 33 4135
[28] Wei X, Hui H, Zhao C, Deng C, Han M, Yu Z, Sheng A, Roy P, Chen A, Lin J, Watson D F, Sun Y Y, Thomay T, Yang S, Jia Q, Zhang S and Zeng H 2020 Nano Energy 68 104317
[29] Niu S, Huyan H, Liu Y, Yeung M, Ye K, Blankemeier L, Orvis T, Sarkar D, Singh D J, Kapadia R and Ravichandran J 2017 Adv. Mater. 29 1604733
[30] Meng W, Saparov B, Hong F, Wang J, Mitzi D B and Yan Y 2016 Chem. Mater. 28 821
[31] Hanzawa K, Iimura S, Hiramatsu H and Hosono H 2019 J. Am. Chem. Soc. 141 5343
[32] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[35] Sun J, Ruzsinszky A and Perdew J P 2015 Phys. Rev. Lett. 115 036402
[36] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[37] Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390
[38] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[39] Hellman O, Abrikosov I A and Simak S I 2011 Phys. Rev. B 84 180301
[40]Rodier N and Laruelle P 1970 C. R. Acad. Sc. (Paris) C270 2127
[41]Rodier N, Laruelle P and Flahaut J 1969 C. R. Acad. Sc. (Paris) C269 1391
[42] IJdo D 1980 Acta Crystallogr. Sect. B 36 2403
[43] Range K J, Gietl A and Klement U 1993 Z. Kristallogr. 207 147
[44] Glazer A 1972 Acta Crystallogr. Sect. B 28 3384
[45] Yamaoka S and Okai B 1970 Mater. Res. Bull. 5 789
[46] Lee C S, Kleinke K M and Kleinke H 2005 Solid State Sci. 7 1049
[47] Hahn H and Mutschke U 1957 Z. Anorg. Allg. Chem. 288 269
[48] Noel H and Padiou J 1976 Acta Crystallogr. Sect. B 32 1593
[49] Murakami M, Hirose K, Kawamura K, Sata N and Ohishi Y 2004 Science 304 855
[50]Crevecoeur C and Romers C 1964 Proc. Koninklijke Nederlandse Acad. Van Wetenschappen 67 289
[51] Rodier N 1973 Bull. La Societe Francaise Mineralogie Cristallographie 96 350
[52] Kuhar K, Crovetto A, Pandey M, Thygesen K S, Seger B, Vesborg P C K, Hansen O, Chorkendorff I and Jacobsen K W 2017 Energy & Environ. Sci. 10 2579
[53]Sze S M 1969 Physics of Semiconductor Devices (New Jersey: Wiley)
[54] Ricci F, Chen W, Aydemir U, Snyder G J, Rignanese G M, Jain A and Hautier G 2017 Sci. Data 4 170085
[55] Freysoldt C, Neugebauer J and van de Walle C G 2009 Phys. Rev. Lett. 102 016402
Related articles from Frontiers Journals
[1] Gen Yue, Zhen Deng, Sen Wang, Ran Xu, Xinxin Li, Ziguang Ma, Chunhua Du, Lu Wang, Yang Jiang, Haiqiang Jia, Wenxin Wang, Hong Chen. Absorption Enhancement of Silicon Solar Cell in a Positive-Intrinsic-Negative Junction[J]. Chin. Phys. Lett., 2019, 36(5): 097201
[2] Junkang Li, Yiming Qu, Siyu Zeng, Ran Cheng, Rui Zhang, Yi Zhao. Ge Complementary Tunneling Field-Effect Transistors Featuring Dopant Segregated NiGe Source/Drain[J]. Chin. Phys. Lett., 2018, 35(11): 097201
[3] Filippov V. V., Mitsuk S.V.. Modelling Magnetoresistance Effect in Limited Anisotropic Semiconductors[J]. Chin. Phys. Lett., 2017, 34(7): 097201
[4] FILIPPOV V. V., VLASOV A. N.. Express Methods for Measurement of Electroconductivity of Semiconductor Layered Crystal[J]. Chin. Phys. Lett., 2015, 32(11): 097201
[5] MA Xue-Zhi, ZHANG Rui, SUN Jia-Bao, SHI Yi, ZHAO Yi. Reduction of Reactive-Ion Etching-Induced Ge Surface Roughness by SF6/CF4 Cyclic Etching for Ge Fin Fabrication[J]. Chin. Phys. Lett., 2015, 32(4): 097201
[6] YUAN Heng, ZHANG Ji-Xing, ZHANG Chen, ZHANG Ning, XU Li-Xia, DING Ming, Patrick J. Clarke. Low Gate Voltage Operated Multi-emitter-dot H+ Ion-Sensitive Gated Lateral Bipolar Junction Transistor[J]. Chin. Phys. Lett., 2015, 32(02): 097201
[7] WANG Hong-Juan, HAN Gen-Quan, LIU Yan, YAN Jing, ZHANG Chun-Fu, ZHANG Jin-Cheng, HAO Yue. Germanium PMOSFETs with Low-Temperature Si2H6 Passivation Featuring High Hole Mobility and Superior Negative Bias Temperature Instability[J]. Chin. Phys. Lett., 2014, 31(05): 097201
[8] ZHANG Li-Ning, MEI Jin-He, ZHANG Xiang-Yu, TAO Jin, HU Yue, HE Jin, CHAN Mansun. A Comparative Study of Ballistic Transport Models for Nanowire MOSFETs[J]. Chin. Phys. Lett., 2013, 30(11): 097201
[9] DENG Ning, TANG Jian-Shi, ZHANG Lei, ZHANG Shu-Chao, CHEN Pei-Yi. Spin Injection from Ferromagnetic Metal Directly into Non-Magnetic Semiconductor under Different Injection Currents[J]. Chin. Phys. Lett., 2010, 27(9): 097201
[10] XU Yue, YAN Feng, CHEN Dun-Jun, SHI Yi, WANG Yong-Gang, LI Zhi-Guo, YANG Fan, WANG Jos-Hua, LIN Peter, CHANG Jian-Guang. Improved Programming Efficiency through Additional Boron Implantation at the Active Area Edge in 90nm Localized Charge-Trapping Non-volatile Memory[J]. Chin. Phys. Lett., 2010, 27(6): 097201
[11] JIANG Ruolian, LIU Jianlin, ZHENG Youdou*, ZHENG Guozhen*, WEI Yayi*, SHEN Xuechu*. High Hole Mobility Si/Sil-xGex/Si Heterostructure[J]. Chin. Phys. Lett., 1994, 11(2): 097201
[12] LI Jianming. NOVEL SEMICONDUCTOR SUBSTRATE FO-D BY HYDROGEN ION IMPLANTATION INTO SILICON [J]. Chin. Phys. Lett., 1989, 6(10): 097201
Viewed
Full text


Abstract