Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 097101    DOI: 10.1088/0256-307X/37/9/097101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Performance Enhancement of AlGaN/GaN MIS-HEMTs Realized via Supercritical Nitridation Technology
Meihua Liu , Zhangwei Huang , Kuanchang Chang , Xinnan Lin , Lei Li , and Yufeng Jin*
School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
Cite this article:   
Meihua Liu , Zhangwei Huang , Kuanchang Chang  et al  2020 Chin. Phys. Lett. 37 097101
Download: PDF(909KB)   PDF(mobile)(906KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This paper proposes a method of repairing interface defects by supercritical nitridation technology, in order to suppress the threshold voltage shift of AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs). We find that supercritical NH$_{3}$ fluid has the characteristics of both liquid NH$_{3}$ and gaseous NH$_{3}$ simultaneously, i.e., high penetration and high solubility, which penetrate the packaging of MIS-HEMTs. In addition, NH$_{2}^{-}$ produced via the auto coupling ionization of NH$_{3}$ has strong nucleophilic ability, and is able to fill nitrogen vacancies near the GaN surface created by high temperature processes. After supercritical fluid treatment, the threshold voltage shift is reduced from 1 V to 0 V, and the interface trap density is reduced by two orders of magnitude. The results show that the threshold voltage shift of MIS-HEMTs can be effectively suppressed by means of supercritical nitridation technology.
Received: 09 May 2020      Published: 01 September 2020
PACS:  71.55.Eq (III-V semiconductors)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Supported by the Shenzhen Science and Technology Innovation Committee (Grant Nos. ZDSYS201802061805105, JCYJ20190808155007550K, QJSCX20170728102129176, and JCYJ20170810163407761), and the National Natural Science Foundation of China (Grant No. U1613215).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/097101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/097101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meihua Liu 
Zhangwei Huang 
Kuanchang Chang 
Xinnan Lin 
Lei Li 
and Yufeng Jin
[1] Saito W, Nitta T, Kakiuchi Y and Saito Y 2007 IEEE Trans. Electron Devices 54 1825
[2] Wu T, Marcon D, Bakeroot B and Jaeger B D 2015 Appl. Phys. Lett. 107 093507
[3] Dong B, Lin J, Wang N and Jiang L 2016 AIP Adv. 6 095021
[4] Uemoto Y, Hikita M, Ueno H and Matsuo H 2007 IEEE Trans. Electron Devices 54 3393
[5] Dutta G, Dasgupta N and Dasgupta A 2016 IEEE Trans. Electron Devices 63 1450
[6] Zhang Z L, Li W Y, Fu K et al. 2017 IEEE Electron Device Lett. 38 236
[7] Tsai C T, Chang K M, Liu P T, Yang and P Y 2007 Appl. Phys. Lett. 91 12109
[8] Chattopadhyay P and Gupta R B 2001 Int. J. Pharm. 228 19
[9] Sun H, Liu M, Liu P and Lin X 2017 IEEE Trans. Electron Devices 65 622
[10] Stoklas R, Gregušová D and Novák J 2008 Appl. Phys. Lett. 93 124103
[11] Hashizume T and Hasegawa H 2004 Appl. Surf. Sci. 234 1
[12] Robertson J 2009 Appl. Phys. Lett. 94 152104
[13] Marrani A G, Caprioli F, Boccia A, Zanoni R 2014 J. Solid State Electrochem. 18 505
[14] Chuvenkova O A, Domashevskaya E P, Ryabtsev S V 2015 Phys. Solid State 57 1
[15] Yamada Y, Yasuda H, Murota K and Nakamura M 2013 J. Mater. Sci. 48 8171
[16]George M M, Craig A K and Manuel U O 2004 US Patent 2004/0049079 A1
[17] Yu J, Liu Y, Tang J, Wang X and Zhou J 2014 Angew. Chem. 53 9512
Related articles from Frontiers Journals
[1] Ting-Ting Wang, Xiao Wang, Xiao-Bo Li, Jin-Cheng Zhang, Jin-Ping Ao. Temperature-Dependent Characteristics of GaN Schottky Barrier Diodes with TiN and Ni Anodes[J]. Chin. Phys. Lett., 2019, 36(5): 097101
[2] Jin Xu, Wei Zhang, Meng Peng, Jiang-Nan Dai, Chang-Qing Chen. Enhanced Luminescence of InGaN-Based 395nm Flip-Chip Near-Ultraviolet Light-Emitting Diodes with Al as N-Electrode[J]. Chin. Phys. Lett., 2017, 34(7): 097101
[3] Sheng-Kai Wang, Lei Ma, Hu-Dong Chang, Bing Sun, Yu-Yu Su, Le Zhong, Hai-Ou Li, Zhi Jin, Xin-Yu Liu, Hong-Gang Liu. Positive Bias Temperature Instability Degradation of Buried InGaAs Channel nMOSFETs with InGaP Barrier Layer and Al$_{2}$O$_{3}$ Dielectric[J]. Chin. Phys. Lett., 2017, 34(5): 097101
[4] De-Gang Zhao, De-Sheng Jiang, Ling-Cong Le, Jing Yang, Ping Chen, Zong-Shun Liu, Jian-Jun Zhu, Li-Qun Zhang. Performance Improvement of GaN-Based Violet Laser Diodes[J]. Chin. Phys. Lett., 2017, 34(1): 097101
[5] Ying Zhao, Sheng-Rui Xu, Zhi-Yu Lin, Jin-Cheng Zhang, Teng Jiang, Meng-Di Fu, Jia-Duo Zhu, Qin Lu, Yue Hao. C-Implanted N-Polar GaN Films Grown by Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(12): 097101
[6] Sheng-Rui Xu, Ying Zhao, Teng Jiang, Jin-Cheng Zhang, Pei-Xian Li, Yue Hao. Improved Semipolar (11$\bar{2}$2) GaN Quality Grown on $m$-Plane Sapphire Substrates by Metal Organic Chemical Vapor Deposition Using Self-Organized SiN$_{x}$ Interlayer[J]. Chin. Phys. Lett., 2016, 33(06): 097101
[7] ZHOU Shu-Xing, QI Ming, AI Li-Kun, XU An-Huai, WANG Li-Dan, DING Peng, JIN Zhi. Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures[J]. Chin. Phys. Lett., 2015, 32(09): 097101
[8] JIANG Ren-Yuan, XU Sheng-Rui, ZHANG Jin-Cheng, JIANG Teng, JIANG Hai-Qing, WANG Zhi-Zhe, FAN Yong-Xiang, HAO Yue. Morphological and Microstructural Evolution and Related Impurity Incorporation in Non-Polar a-Plane GaN Grown on r-Sapphire Substrates[J]. Chin. Phys. Lett., 2015, 32(09): 097101
[9] FENG Zhi-Hong, WANG Xian-Bin, WANG Li, LV Yuan-Jie, FANG Yu-Long, DUN Shao-Bo, ZHAO Zheng-Ping. Ti/Al Based Ohmic Contact to As-Grown N-Polar GaN[J]. Chin. Phys. Lett., 2015, 32(08): 097101
[10] NIU Bin, WANG Yuan, CHENG Wei, XIE Zi-Li, LU Hai-Yan, CHANG Long, XIE Jun-Ling. Common Base Four-Finger InGaAs/InP Double Heterojunction Bipolar Transistor with Maximum Oscillation Frequency 535 GHz[J]. Chin. Phys. Lett., 2015, 32(07): 097101
[11] KONG Xiang-Ting, ZHOU Xu-Liang, LI Shi-Yan, QIAO Li-Jun, LIU Hong-Gang, WANG Wei, PAN Jiao-Qing. High-Performance In0.23Ga0.77As Channel MOSFETs with High Current Ratio Ion/Ioff Grown on Semi-insulating GaAs Substrates by MOCVD[J]. Chin. Phys. Lett., 2015, 32(03): 097101
[12] ZHOU Xu-Liang, PAN Jiao-Qing, YU Hong-Yan, LI Shi-Yan, WANG Bao-Jun, BIAN Jing, WANG Wei. Growth of High-Quality GaAs on Ge by Controlling the Thickness and Growth Temperature of Buffer Layer[J]. Chin. Phys. Lett., 2014, 31(12): 097101
[13] ZHANG Shi-Ying, XIU Xiang-Qian, HUA Xue-Mei, XIE Zi-Li, LIU Bin, CHEN Peng, HAN Ping, LU Hai, ZHANG Rong, ZHENG You-Dou. Synthesis and Growth Mechanism: A Novel Fishing Rod-Shaped GaN Nanorods[J]. Chin. Phys. Lett., 2014, 31(05): 097101
[14] ZHANG Jian-Li, LIU Jun-Lin, PU Yong, FANG Wen-Qing, ZHANG Meng, JIANG Feng-Yi. Effects of Carrier Gas on Carbon Incorporation in GaN[J]. Chin. Phys. Lett., 2014, 31(03): 097101
[15] HUANG Duo-Hui, YANG Jun-Sheng, CAO Qi-Long, WAN Ming-Jie, LI Qiang, SUN Liang, WANG Fan-Hou. Effect of Mg and Fe Doping on Optical Absorption of LiNbO3 Crystal through First Principles Calculations[J]. Chin. Phys. Lett., 2014, 31(03): 097101
Viewed
Full text


Abstract