Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 090302    DOI: 10.1088/0256-307X/37/9/090302
GENERAL |
Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays
Xin-Wei Zha , Min-Rui Wang*, and Ruo-Xu Jiang 
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Cite this article:   
Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang  2020 Chin. Phys. Lett. 37 090302
Download: PDF(410KB)   PDF(mobile)(406KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Huber et al. [Phys. Rev. Lett. 118 (2017) 200502] have proved that a seven-qubit state whose three-body marginal states are all maximally mixed does not exist. Here, we propose a method to build a maximally entangled state based on orthogonal arrays to construct maximally entangled seven-qubit states. Using this method, we not only determine that a seven-qubit state whose three-body marginals are all maximally mixed does not exist, but also find the condition for maximally entangled seven-qubit states. We consider that $\pi_{\rm ME} =19/140$ is a condition for maximally entangled seven-qubit states. Furthermore, we derive three forms of maximally entangled seven-qubit states via orthogonal arrays.
Received: 15 March 2020      Published: 01 September 2020
PACS:  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/090302       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/090302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin-Wei Zha 
Min-Rui Wang
and Ruo-Xu Jiang 
[1]Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Benatti F, Liguori A M and Paluzzano G 2010 J. Phys. A 43 045304
[4] Facchi P, Marzolino U, Parisi G, Pascazio S and Scardicchio A 2008 Phys. Rev. Lett. 101 050502
[5] Higuchi A and Sudbery A 2000 Phys. Lett. A 273 213
[6] Gisin N and Bechmann-Pasquinucci H 1998 Phys. Lett. A 246 1
[7] Verstraete F, Audenaert K and De Moor B 2001 Phys. Rev. A 64 012316
[8] Acín A, Gill R and Gisin N 2005 Phys. Rev. Lett. 95 210402
[9] Ishizaka S and Hiroshima T 2000 Phys. Rev. A 62 022310
[10] Yu N K, Duan R Y and Ying M S 2012 Phys. Rev. Lett. 109 020506
[11] De Vicente J I, Spee C and Kraus B 2013 Phys. Rev. Lett. 111 110502
[12] Martin J, Giraud O, Braun P A et al. 2010 Phys. Rev. A 81 062347
[13] Facchi P, Florio G, Parisi G and Pascazio S 2008 Phys. Rev. A 77 060304
[14] Zha X W, Yuan C Z and Zhang Y P 2013 Laser Phys. Lett. 10 045201
[15] Goyeneche D and Życzkowski K 2014 Phys. Rev. A 90 022316
[16] Arnaud L and Cerf N J 2013 Phys. Rev. A 87 012319
[17] Gour G and Wallach N R 2010 J. Math. Phys. 51 112201
[18] Huber F, Gühne O and Siewert J 2017 Phys. Rev. Lett. 118 200502
[19] Giraud O 2007 J. Phys. A 40 F1053
[20] Zha X W, Ahmed I, Zhang D and Zhang Y P 2020 Laser Phys. Lett. 17 035201
[21] Zha X W, Song H Y, Qi J X et al. 2012 J. Phys. A 45 255302
[22] Yu X Y, Zha X W and Che J L 2018 Sci. Sin.-Phys. Mech. Astron. 48 020301 (in Chinese)
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 090302
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 090302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 090302
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 090302
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 090302
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 090302
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 090302
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 090302
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 090302
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 090302
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 090302
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 090302
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 090302
[14] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 090302
[15] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 090302
Viewed
Full text


Abstract