GENERAL |
|
|
|
|
Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays |
Xin-Wei Zha , Min-Rui Wang*, and Ruo-Xu Jiang |
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China |
|
Cite this article: |
Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang 2020 Chin. Phys. Lett. 37 090302 |
|
|
Abstract Huber et al. [Phys. Rev. Lett. 118 (2017) 200502] have proved that a seven-qubit state whose three-body marginal states are all maximally mixed does not exist. Here, we propose a method to build a maximally entangled state based on orthogonal arrays to construct maximally entangled seven-qubit states. Using this method, we not only determine that a seven-qubit state whose three-body marginals are all maximally mixed does not exist, but also find the condition for maximally entangled seven-qubit states. We consider that $\pi_{\rm ME} =19/140$ is a condition for maximally entangled seven-qubit states. Furthermore, we derive three forms of maximally entangled seven-qubit states via orthogonal arrays.
|
|
Received: 15 March 2020
Published: 01 September 2020
|
|
PACS: |
03.67.-a
|
(Quantum information)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
|
|
|
[1] | Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) |
[2] | Ekert A K 1991 Phys. Rev. Lett. 67 661 |
[3] | Benatti F, Liguori A M and Paluzzano G 2010 J. Phys. A 43 045304 |
[4] | Facchi P, Marzolino U, Parisi G, Pascazio S and Scardicchio A 2008 Phys. Rev. Lett. 101 050502 |
[5] | Higuchi A and Sudbery A 2000 Phys. Lett. A 273 213 |
[6] | Gisin N and Bechmann-Pasquinucci H 1998 Phys. Lett. A 246 1 |
[7] | Verstraete F, Audenaert K and De Moor B 2001 Phys. Rev. A 64 012316 |
[8] | Acín A, Gill R and Gisin N 2005 Phys. Rev. Lett. 95 210402 |
[9] | Ishizaka S and Hiroshima T 2000 Phys. Rev. A 62 022310 |
[10] | Yu N K, Duan R Y and Ying M S 2012 Phys. Rev. Lett. 109 020506 |
[11] | De Vicente J I, Spee C and Kraus B 2013 Phys. Rev. Lett. 111 110502 |
[12] | Martin J, Giraud O, Braun P A et al. 2010 Phys. Rev. A 81 062347 |
[13] | Facchi P, Florio G, Parisi G and Pascazio S 2008 Phys. Rev. A 77 060304 |
[14] | Zha X W, Yuan C Z and Zhang Y P 2013 Laser Phys. Lett. 10 045201 |
[15] | Goyeneche D and Życzkowski K 2014 Phys. Rev. A 90 022316 |
[16] | Arnaud L and Cerf N J 2013 Phys. Rev. A 87 012319 |
[17] | Gour G and Wallach N R 2010 J. Math. Phys. 51 112201 |
[18] | Huber F, Gühne O and Siewert J 2017 Phys. Rev. Lett. 118 200502 |
[19] | Giraud O 2007 J. Phys. A 40 F1053 |
[20] | Zha X W, Ahmed I, Zhang D and Zhang Y P 2020 Laser Phys. Lett. 17 035201 |
[21] | Zha X W, Song H Y, Qi J X et al. 2012 J. Phys. A 45 255302 |
[22] | Yu X Y, Zha X W and Che J L 2018 Sci. Sin.-Phys. Mech. Astron. 48 020301 (in Chinese) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|