Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 090301    DOI: 10.1088/0256-307X/37/9/090301
GENERAL |
Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$
Kaixuan Zhang1†, Yongping Du2†, Pengdong Wang3, Laiming Wei1, Lin Li1, Qiang Zhang1, Wei Qin1, Zhiyong Lin1, Bin Cheng1, Yifan Wang1, Han Xu1, Xiaodong Fan1, Zhe Sun3,5, Xiangang Wan4,5*, and Changgan Zeng1*
1International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
2Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China
3National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
4National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
5Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Kaixuan Zhang, Yongping Du, Pengdong Wang et al  2020 Chin. Phys. Lett. 37 090301
Download: PDF(2807KB)   PDF(mobile)(4905KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Weyl semimetal has emerged as a new topologically nontrivial phase of matter, hosting low-energy excitations of massless Weyl fermions. Here, we present a comprehensive study of a type-II Weyl semimetal WP$_{2}$. Transport studies show a butterfly-like magnetoresistance at low temperature, reflecting the anisotropy of the electron Fermi surfaces. This four-lobed feature gradually evolves into a two-lobed variant with an increase in temperature, mainly due to the reduced relative contribution of electron Fermi surfaces compared to hole Fermi surfaces for magnetoresistance. Moreover, an angle-dependent Berry phase is also discovered, based on quantum oscillations, which is ascribed to the effective manipulation of extremal Fermi orbits by the magnetic field to feel nearby topological singularities in the momentum space. The revealed topological character and anisotropic Fermi surfaces of the WP$_{2}$ substantially enrich the physical properties of Weyl semimetals, and show great promises in terms of potential topological electronic and Fermitronic device applications.
Received: 04 June 2020      Published: 01 September 2020
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  72.15.-v (Electronic conduction in metals and alloys)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11974324, 11804326, U1832151, and 11674296), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDC07010000), the National Key Research and Development Program of China (Grant No. 2017YFA0403600), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY170000), the Hefei Science Center CAS (Grant No. 2018HSC-UE014), the Jiangsu Provincial Science Foundation for Youth (Grant No. BK20170821), the National Natural Science Foundation of China for Youth (Grant No. 11804160), and the Anhui Provincial Natural Science Foundation (Grant No. 1708085MF136).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/090301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/090301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kaixuan Zhang
Yongping Du
Pengdong Wang
Laiming Wei
Lin Li
Qiang Zhang
Wei Qin
Zhiyong Lin
Bin Cheng
Yifan Wang
Han Xu
Xiaodong Fan
Zhe Sun
Xiangang Wan
and Changgan Zeng
[1] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[2] Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X and Zhou S 2016 Nat. Phys. 12 1105
[3] Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H Z, Xing D, Wang B, Wan X and Miao F 2016 Nat. Commun. 7 13142
[4] Lv Y Y, Li X, Zhang B B, Deng W Y, Yao S H, Chen Y B, Zhou J, Zhang S T, Lu M H, Zhang L, Tian M, Sheng L and Chen Y F 2017 Phys. Rev. Lett. 118 096603
[5] Ma J, Gu Q, Liu Y, Lai J, Yu P, Zhuo X, Liu Z, Chen J H, Feng J and Sun D 2019 Nat. Mater. 18 476
[6] Wang Q, Zheng J, He Y, Cao J, Liu X, Wang M, Ma J, Lai J, Lu H, Jia S, Yan D, Shi Y, Duan J, Han J, Xiao W, Chen J H, Sun K, Yao Y and Sun D 2019 Nat. Commun. 10 5736
[7] Chen D, Zhao L X, He J B, Liang H, Zhang S, Li C H, Shan L, Wang S C, Ren Z A, Ren C and Chen G F 2016 Phys. Rev. B 94 174411
[8] Frenzel A J, Homes C C, Gibson Q D, Shao Y M, Post K W, Charnukha A, Cava R J and Basov D N 2017 Phys. Rev. B 95 245140
[9] Zhang K, Du Y, Qi Z, Cheng B, Fan X, Wei L, Li L, Wang D, Yu G, Hu S, Sun C, Huang Z, Chu J, Wan X and Zeng C 2020 Phys. Rev. Appl. 13 014058
[10] Autes G, Gresch D, Troyer M, Soluyanov A A and Yazyev O V 2016 Phys. Rev. Lett. 117 066402
[11] Kumar N, Sun Y, Xu N, Manna K, Yao M, Suss V, Leermakers I, Young O, Forster T, Schmidt M, Borrmann H, Yan B, Zeitler U, Shi M, Felser C and Shekhar C 2017 Nat. Commun. 8 1642
[12] Razzoli E, Zwartsenberg B, Michiardi M, Boschini F, Day R P, Elfimov I S, Denlinger J D, Süss V, Felser C and Damascelli A 2018 Phys. Rev. B 97 201103(R)
[13] Yao M Y, Xu N, Wu Q S, Autes G, Kumar N, Strocov V N, Plumb N C, Radovic M, Yazyev O V, Felser C, Mesot J and Shi M 2019 Phys. Rev. Lett. 122 176402
[14] Kosevich A M 2004 Low Temp. Phys. 30 97
[15] Berry M V 1984 Proc. R. Soc. London A 392 45
[16] Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147
[17] Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y and Terakura K 2003 Science 302 92
[18] Mikitik G and Sharlai Y V 2004 Phys. Rev. Lett. 93 106403
[19] Yao Y, Kleinman L, MacDonald A, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204
[20] Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490
[21] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[22] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[23] Sacepe B, Oostinga J B, Li J, Ubaldini A, Couto N J, Giannini E and Morpurgo A F 2011 Nat. Commun. 2 575
[24] Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821
[25] Zhao Y, Liu H, Zhang C, Wang H, Wang J, Lin Z, Xing Y, Lu H, Liu J, Wang Y, Brombosz S M, Xiao Z, Jia S, Xie X C and Wang J 2015 Phys. Rev. X 5 031037
[26] Hu J, Liu J Y, Graf D, Radmanesh S M, Adams D J, Chuang A, Wang Y, Chiorescu I, Wei J, Spinu L and Mao Z Q 2016 Sci. Rep. 6 18674
[27] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[28] Mathis H, Glaum R and Gruehn R 1991 Acta Chem. Scand. 45 781
[29] Rundqvist S and Lundstrom T 1963 Acta Chem. Scand. 17 37
[30] Rühl R and Jeitschko W 1983 Monatsh. Chem. - Chem. Mon. 114 817
[31] Schönemann R, Aryal N, Zhou Q, Chiu Y C, Chen K W, Martin T J, McCandless G T, Chan J Y, Manousakis E and Balicas L 2017 Phys. Rev. B 96 121108(R)
[32] Wang A, Graf D, Liu Y, Du Q, Zheng J, Lei H and Petrovic C 2017 Phys. Rev. B 96 121107(R)
[33]Ashcroft N and Mermin N 1976 Solid State Physics (San Diego: Harcourt College Publisher)
[34] Ali M N, Schoop L M, Garg C, Lippmann J M, Lara E, Lotsch B and Parkin S S 2016 Sci. Adv. 2 e1601742
[35] Onsager L 1952 Philos. Mag. 43 1006
[36]Lifshitz I M and Kosevich A M 1956 Sov. Phys.-JETP 2 636
[37]Lifshitz I M and Kosevich A M 1958 Sov. Phys.-JETP 6 67
[38] Arnold F, Shekhar C, Wu S C, Sun Y, Dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B 2016 Nat. Commun. 7 11615
[39] Li C H, Long Y J, Zhao L X, Shan L, Ren Z A, Zhao J Z, Weng H M, Dai X, Fang Z, Ren C and Chen G F 2017 Phys. Rev. B 95 125417
[40] Wang Y Y, Sun L L, Xu S, Su Y and Xia T L 2018 Phys. Rev. B 98 045137
[41] Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S and Geim A K 2014 Science 346 448
Related articles from Frontiers Journals
[1] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 090301
[2] Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong. Optimization of Light Field for Generation of Vortex Knot[J]. Chin. Phys. Lett., 2022, 39(10): 090301
[3] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 090301
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 090301
[5] Jiong-Hao Wang, Yu-Liang Tao, and Yong Xu. Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems[J]. Chin. Phys. Lett., 2022, 39(1): 090301
[6] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 090301
[7] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 090301
[8] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 090301
[9] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 090301
[10] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 090301
[11] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 090301
[12] Gang-Feng Guo, Xi-Xi Bao, Lei Tan, and Huai-Qiang Gu. Phase-Modulated 2D Topological Physics in a One-Dimensional Ultracold System[J]. Chin. Phys. Lett., 2021, 38(4): 090301
[13] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 090301
[14] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 090301
[15] Cuiying Pei, Yunyouyou Xia, Jiazhen Wu, Yi Zhao, Lingling Gao, Tianping Ying, Bo Gao, Nana Li, Wenge Yang, Dongzhou Zhang, Huiyang Gou, Yulin Chen, Hideo Hosono, Gang Li, Yanpeng Qi. Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator[J]. Chin. Phys. Lett., 2020, 37(6): 090301
Viewed
Full text


Abstract