GENERAL |
|
|
|
|
Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$ |
Kaixuan Zhang1†, Yongping Du2†, Pengdong Wang3, Laiming Wei1, Lin Li1, Qiang Zhang1, Wei Qin1, Zhiyong Lin1, Bin Cheng1, Yifan Wang1, Han Xu1, Xiaodong Fan1, Zhe Sun3,5, Xiangang Wan4,5*, and Changgan Zeng1* |
1International Center for Quantum Design of Functional Materials, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China 2Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China 3National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China 4National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China 5Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
|
|
Cite this article: |
Kaixuan Zhang, Yongping Du, Pengdong Wang et al 2020 Chin. Phys. Lett. 37 090301 |
|
|
Abstract The Weyl semimetal has emerged as a new topologically nontrivial phase of matter, hosting low-energy excitations of massless Weyl fermions. Here, we present a comprehensive study of a type-II Weyl semimetal WP$_{2}$. Transport studies show a butterfly-like magnetoresistance at low temperature, reflecting the anisotropy of the electron Fermi surfaces. This four-lobed feature gradually evolves into a two-lobed variant with an increase in temperature, mainly due to the reduced relative contribution of electron Fermi surfaces compared to hole Fermi surfaces for magnetoresistance. Moreover, an angle-dependent Berry phase is also discovered, based on quantum oscillations, which is ascribed to the effective manipulation of extremal Fermi orbits by the magnetic field to feel nearby topological singularities in the momentum space. The revealed topological character and anisotropic Fermi surfaces of the WP$_{2}$ substantially enrich the physical properties of Weyl semimetals, and show great promises in terms of potential topological electronic and Fermitronic device applications.
|
|
Received: 04 June 2020
Published: 01 September 2020
|
|
PACS: |
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11974324, 11804326, U1832151, and 11674296), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDC07010000), the National Key Research and Development Program of China (Grant No. 2017YFA0403600), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY170000), the Hefei Science Center CAS (Grant No. 2018HSC-UE014), the Jiangsu Provincial Science Foundation for Youth (Grant No. BK20170821), the National Natural Science Foundation of China for Youth (Grant No. 11804160), and the Anhui Provincial Natural Science Foundation (Grant No. 1708085MF136). |
|
|
[1] | Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 |
[2] | Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X and Zhou S 2016 Nat. Phys. 12 1105 |
[3] | Wang Y, Liu E, Liu H, Pan Y, Zhang L, Zeng J, Fu Y, Wang M, Xu K, Huang Z, Wang Z, Lu H Z, Xing D, Wang B, Wan X and Miao F 2016 Nat. Commun. 7 13142 |
[4] | Lv Y Y, Li X, Zhang B B, Deng W Y, Yao S H, Chen Y B, Zhou J, Zhang S T, Lu M H, Zhang L, Tian M, Sheng L and Chen Y F 2017 Phys. Rev. Lett. 118 096603 |
[5] | Ma J, Gu Q, Liu Y, Lai J, Yu P, Zhuo X, Liu Z, Chen J H, Feng J and Sun D 2019 Nat. Mater. 18 476 |
[6] | Wang Q, Zheng J, He Y, Cao J, Liu X, Wang M, Ma J, Lai J, Lu H, Jia S, Yan D, Shi Y, Duan J, Han J, Xiao W, Chen J H, Sun K, Yao Y and Sun D 2019 Nat. Commun. 10 5736 |
[7] | Chen D, Zhao L X, He J B, Liang H, Zhang S, Li C H, Shan L, Wang S C, Ren Z A, Ren C and Chen G F 2016 Phys. Rev. B 94 174411 |
[8] | Frenzel A J, Homes C C, Gibson Q D, Shao Y M, Post K W, Charnukha A, Cava R J and Basov D N 2017 Phys. Rev. B 95 245140 |
[9] | Zhang K, Du Y, Qi Z, Cheng B, Fan X, Wei L, Li L, Wang D, Yu G, Hu S, Sun C, Huang Z, Chu J, Wan X and Zeng C 2020 Phys. Rev. Appl. 13 014058 |
[10] | Autes G, Gresch D, Troyer M, Soluyanov A A and Yazyev O V 2016 Phys. Rev. Lett. 117 066402 |
[11] | Kumar N, Sun Y, Xu N, Manna K, Yao M, Suss V, Leermakers I, Young O, Forster T, Schmidt M, Borrmann H, Yan B, Zeitler U, Shi M, Felser C and Shekhar C 2017 Nat. Commun. 8 1642 |
[12] | Razzoli E, Zwartsenberg B, Michiardi M, Boschini F, Day R P, Elfimov I S, Denlinger J D, Süss V, Felser C and Damascelli A 2018 Phys. Rev. B 97 201103(R) |
[13] | Yao M Y, Xu N, Wu Q S, Autes G, Kumar N, Strocov V N, Plumb N C, Radovic M, Yazyev O V, Felser C, Mesot J and Shi M 2019 Phys. Rev. Lett. 122 176402 |
[14] | Kosevich A M 2004 Low Temp. Phys. 30 97 |
[15] | Berry M V 1984 Proc. R. Soc. London A 392 45 |
[16] | Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147 |
[17] | Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y and Terakura K 2003 Science 302 92 |
[18] | Mikitik G and Sharlai Y V 2004 Phys. Rev. Lett. 93 106403 |
[19] | Yao Y, Kleinman L, MacDonald A, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204 |
[20] | Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490 |
[21] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 |
[22] | Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 |
[23] | Sacepe B, Oostinga J B, Li J, Ubaldini A, Couto N J, Giannini E and Morpurgo A F 2011 Nat. Commun. 2 575 |
[24] | Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821 |
[25] | Zhao Y, Liu H, Zhang C, Wang H, Wang J, Lin Z, Xing Y, Lu H, Liu J, Wang Y, Brombosz S M, Xiao Z, Jia S, Xie X C and Wang J 2015 Phys. Rev. X 5 031037 |
[26] | Hu J, Liu J Y, Graf D, Radmanesh S M, Adams D J, Chuang A, Wang Y, Chiorescu I, Wei J, Spinu L and Mao Z Q 2016 Sci. Rep. 6 18674 |
[27] | Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 |
[28] | Mathis H, Glaum R and Gruehn R 1991 Acta Chem. Scand. 45 781 |
[29] | Rundqvist S and Lundstrom T 1963 Acta Chem. Scand. 17 37 |
[30] | Rühl R and Jeitschko W 1983 Monatsh. Chem. - Chem. Mon. 114 817 |
[31] | Schönemann R, Aryal N, Zhou Q, Chiu Y C, Chen K W, Martin T J, McCandless G T, Chan J Y, Manousakis E and Balicas L 2017 Phys. Rev. B 96 121108(R) |
[32] | Wang A, Graf D, Liu Y, Du Q, Zheng J, Lei H and Petrovic C 2017 Phys. Rev. B 96 121107(R) |
[33] | Ashcroft N and Mermin N 1976 Solid State Physics (San Diego: Harcourt College Publisher) |
[34] | Ali M N, Schoop L M, Garg C, Lippmann J M, Lara E, Lotsch B and Parkin S S 2016 Sci. Adv. 2 e1601742 |
[35] | Onsager L 1952 Philos. Mag. 43 1006 |
[36] | Lifshitz I M and Kosevich A M 1956 Sov. Phys.-JETP 2 636 |
[37] | Lifshitz I M and Kosevich A M 1958 Sov. Phys.-JETP 6 67 |
[38] | Arnold F, Shekhar C, Wu S C, Sun Y, Dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E and Yan B 2016 Nat. Commun. 7 11615 |
[39] | Li C H, Long Y J, Zhao L X, Shan L, Ren Z A, Zhao J Z, Weng H M, Dai X, Fang Z, Ren C and Chen G F 2017 Phys. Rev. B 95 125417 |
[40] | Wang Y Y, Sun L L, Xu S, Su Y and Xia T L 2018 Phys. Rev. B 98 045137 |
[41] | Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S and Geim A K 2014 Science 346 448 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|