CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface |
Shuai Zhang1*, Yiyan Wang1,2, Chaoyang Ma1, Wenliang Zhu1,2, Zhian Ren1,2,3, Lei Shan4*, and Genfu Chen1,2,3* |
1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
|
|
Cite this article: |
Shuai Zhang, Yiyan Wang, Chaoyang Ma et al 2020 Chin. Phys. Lett. 37 077401 |
|
|
Abstract We investigate the interface between a three-dimensional Dirac semimetal Cd$_3$As$_2$ and a normal metal via soft-point contact spectroscopy measurement. The superconducting gap features were detected below 3.8 K and 7.1 K in the case of Cd$_3$As$_2$ single crystals sputter-coated with the Pt and Au films, respectively, in the differential conductance $dI/dV$–$V$ plots of the point contacts. As the applied magnetic field increased, the drop in the zero-bias contact resistance shifted toward lower temperatures. The topologically non-trivial band structure of Cd$_3$As$_2$ is considered to play a crucial role in inducing the superconductivity. Apart from realizing superconductivity in topological materials, our creative approach can be used to investigate possible topological superconductivity and exhibits a high application potential in electronic devices.
|
|
Received: 26 April 2020
Published: 21 June 2020
|
|
PACS: |
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.25.Sv
|
(Critical currents)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11704403 and 11874417), the National Key Research Program of China (Grant Nos. 2016YFA0401000, 2016YFA0300604, and 2018YFA070112), and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB33010100). |
|
|
[1] | Wang H, Wang H, Liu H, Lu H, Yang W, Jia S, Liu X J, Xie X C, Wei J and Wang J 2016 Nat. Mater. 15 38 |
[2] | Aggarwal L, Gayen S, Das S, Kumar R, Süß V, Felser C, Shekhar C and Sheet G 2017 Nat. Commun. 8 13974 |
[3] | Wang H, Wang H, Chen Y, Luo J, Yuan Z, Liu J, Wang Y, Jia S, Liu X J, Wei J and Wang J 2017 Sci. Bull. 62 425 |
[4] | Hou X y, Wang Z, Gu Y d, He J b, Chen D, Zhu W l, Zhang M d, Zhang F, Xu Y f, Zhang S, Yang H x, Ren Z a, Weng H m, Hao N, Lv W g, Hu J p, Chen G f and Shan L 2019 Phys. Rev. B 100 235109 |
[5] | Aggarwal L, Singh C K, Aslam M, Singha R, Pariari A, Gayen S, Kabir M, Mandal P and Sheet G 2019 J. Phys.: Condens. Matter 31 485707 |
[6] | Wang H, Ma L and Wang J 2018 Sci. Bull. 63 1141 |
[7] | Zhu W, Hou X, Li J, Huang Y, Zhang S, He J, Chen D, Wang Y, Dong Q, Zhang M, Yang H, Ren Z, Hu J, Shan L and Chen G 2020 Adv. Mater. 32 1907970 |
[8] | Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K and Sheet G 2016 Nat. Mater. 15 32 |
[9] | Bugoslavsky Y, Miyoshi Y, Perkins G K, Caplin A D, Cohen L F, Pogrebnyakov A V and Xi X X 2004 Phys. Rev. B 69 132508 |
[10] | Miyoshi Y, Bugoslavsky Y and Cohen L F 2005 Phys. Rev. B 72 012502 |
[11] | Shan L, Huang Y, Ren C and Wen H H 2006 Phys. Rev. B 73 134508 |
[12] | Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515 |
[13] | Dynes R C, Garno J P, Hertel G B and Orlando T P 1984 Phys. Rev. Lett. 53(25) 2437 |
[14] | Tanaka Y and Kashiwaya S 1995 Phys. Rev. Lett. 74 3451 |
[15] | Suslov A V, Davydov A B, Oveshnikov L N, Morgun L A, Kugel K I, Zakhvalinskii V S, Pilyuk E A, Kochura A V, Kuzmenko A P, Pudalov V M and Aronzon B A 2019 Phys. Rev. B 99 094512 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|