Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 077401    DOI: 10.1088/0256-307X/37/7/077401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface
Shuai Zhang1*, Yiyan Wang1,2, Chaoyang Ma1, Wenliang Zhu1,2, Zhian Ren1,2,3, Lei Shan4*, and Genfu Chen1,2,3*
1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Cite this article:   
Shuai Zhang, Yiyan Wang, Chaoyang Ma et al  2020 Chin. Phys. Lett. 37 077401
Download: PDF(1710KB)   PDF(mobile)(1706KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the interface between a three-dimensional Dirac semimetal Cd$_3$As$_2$ and a normal metal via soft-point contact spectroscopy measurement. The superconducting gap features were detected below 3.8 K and 7.1 K in the case of Cd$_3$As$_2$ single crystals sputter-coated with the Pt and Au films, respectively, in the differential conductance $dI/dV$–$V$ plots of the point contacts. As the applied magnetic field increased, the drop in the zero-bias contact resistance shifted toward lower temperatures. The topologically non-trivial band structure of Cd$_3$As$_2$ is considered to play a crucial role in inducing the superconductivity. Apart from realizing superconductivity in topological materials, our creative approach can be used to investigate possible topological superconductivity and exhibits a high application potential in electronic devices.
Received: 26 April 2020      Published: 21 June 2020
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  74.70.-b (Superconducting materials other than cuprates)  
  74.25.Sv (Critical currents)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11704403 and 11874417), the National Key Research Program of China (Grant Nos. 2016YFA0401000, 2016YFA0300604, and 2018YFA070112), and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB33010100).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/077401       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/077401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuai Zhang
Yiyan Wang
Chaoyang Ma
Wenliang Zhu
Zhian Ren
Lei Shan
and Genfu Chen
[1] Wang H, Wang H, Liu H, Lu H, Yang W, Jia S, Liu X J, Xie X C, Wei J and Wang J 2016 Nat. Mater. 15 38
[2] Aggarwal L, Gayen S, Das S, Kumar R, Süß V, Felser C, Shekhar C and Sheet G 2017 Nat. Commun. 8 13974
[3] Wang H, Wang H, Chen Y, Luo J, Yuan Z, Liu J, Wang Y, Jia S, Liu X J, Wei J and Wang J 2017 Sci. Bull. 62 425
[4] Hou X y, Wang Z, Gu Y d, He J b, Chen D, Zhu W l, Zhang M d, Zhang F, Xu Y f, Zhang S, Yang H x, Ren Z a, Weng H m, Hao N, Lv W g, Hu J p, Chen G f and Shan L 2019 Phys. Rev. B 100 235109
[5] Aggarwal L, Singh C K, Aslam M, Singha R, Pariari A, Gayen S, Kabir M, Mandal P and Sheet G 2019 J. Phys.: Condens. Matter 31 485707
[6] Wang H, Ma L and Wang J 2018 Sci. Bull. 63 1141
[7] Zhu W, Hou X, Li J, Huang Y, Zhang S, He J, Chen D, Wang Y, Dong Q, Zhang M, Yang H, Ren Z, Hu J, Shan L and Chen G 2020 Adv. Mater. 32 1907970
[8] Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K and Sheet G 2016 Nat. Mater. 15 32
[9] Bugoslavsky Y, Miyoshi Y, Perkins G K, Caplin A D, Cohen L F, Pogrebnyakov A V and Xi X X 2004 Phys. Rev. B 69 132508
[10] Miyoshi Y, Bugoslavsky Y and Cohen L F 2005 Phys. Rev. B 72 012502
[11] Shan L, Huang Y, Ren C and Wen H H 2006 Phys. Rev. B 73 134508
[12] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
[13] Dynes R C, Garno J P, Hertel G B and Orlando T P 1984 Phys. Rev. Lett. 53(25) 2437
[14] Tanaka Y and Kashiwaya S 1995 Phys. Rev. Lett. 74 3451
[15] Suslov A V, Davydov A B, Oveshnikov L N, Morgun L A, Kugel K I, Zakhvalinskii V S, Pilyuk E A, Kochura A V, Kuzmenko A P, Pudalov V M and Aronzon B A 2019 Phys. Rev. B 99 094512
Related articles from Frontiers Journals
[1] Zi-Tao Zhang, Yu-Jie Qiao, Ting-Na Shao, Qiang Zhao, Xing-Yu Chen, Mei-Hui Chen, Fang-Hui Zhu, Rui-Fen Dou, Hai-Wen Liu, Chang-Min Xiong, and Jia-Cai Nie. Anomalous Metallic State Driven by Magnetic Field at the LaAlO$_{3}$/KTaO$_{3}$ (111) Interface[J]. Chin. Phys. Lett., 2023, 40(3): 077401
[2] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 077401
[3] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 077401
[4] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 077401
[5] Ying Xiang, Qing Li, Yueying Li, Huan Yang, Yuefeng Nie, and Hai-Hu Wen. Physical Properties Revealed by Transport Measurements for Superconducting Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ Thin Films[J]. Chin. Phys. Lett., 2021, 38(4): 077401
[6] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, and Lu Ji. Erratum: Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon [Chin. Phys. Lett. 36 (2019) 057401][J]. Chin. Phys. Lett., 2021, 38(2): 077401
[7] Yang Ma, Jiasen Niu, Wenyu Xing, Yunyan Yao, Ranran Cai, Jirong Sun, X. C. Xie, Xi Lin, and Wei Han. Superconductor-Metal Quantum Transition at the EuO/KTaO$_{3}$ Interface[J]. Chin. Phys. Lett., 2020, 37(11): 077401
[8] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 077401
[9] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 077401
[10] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 077401
[11] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 077401
[12] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, Lu Ji. Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon[J]. Chin. Phys. Lett., 2019, 36(5): 077401
[13] Hui-Ying Liu, Jun-Ren Shi. Radiation-Induced Oscillating Gap States of Nonequilibrium Two-Dimensional Superconductors[J]. Chin. Phys. Lett., 2018, 35(6): 077401
[14] Yulong Huang, Zhongpei Feng, Shunli Ni, Jun Li, Wei Hu, Shaobo Liu, Yiyuan Mao, Huaxue Zhou, Fang Zhou, Kui Jin, Huabing Wang, Jie Yuan, Xiaoli Dong, Zhongxian Zhao. Superconducting (Li,Fe)OHFeSe Film of High Quality and High Critical Parameters[J]. Chin. Phys. Lett., 2017, 34(7): 077401
[15] Jie Liu, Li-Qun Zhang, Zhen-Nan Jiang, Kamal Ahmad, Jian-She Liu, Wei Chen. Superconducting Nanowire Single Photon Detector with Optical Cavity[J]. Chin. Phys. Lett., 2016, 33(08): 077401
Viewed
Full text


Abstract