Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 077501    DOI: 10.1088/0256-307X/37/7/077501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Site Preference of Se and Te in Bi$_2$Se$_{3-x}$Te$_x$ Thin Films
Yizhe Sun1, Moorthi Kanagaraj1, Qinwu Gao1, Yafei Zhao1, Jiai Ning1, Kunpeng Zhang2, Xianyang Lu1,2, Liang He1,3*, and Yongbing Xu1,2,3*
1National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
2York-Nanjing Joint Center (YNJC) for Spintronics and Nano-engineering, University of York, York YO105DD, United Kingdom
3Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Yizhe Sun, Moorthi Kanagaraj, Qinwu Gao et al  2020 Chin. Phys. Lett. 37 077501
Download: PDF(2422KB)   PDF(mobile)(3862KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The ternary topological insulators Bi$_2$Se$_{3-x}$Te$_x$ have attracted a great deal of attention due to their exotic physical and chemical properties. While most of the studies focus on the properties of these ternary TIs, limited research was performed to investigate the dynamic atomic stack of its crystal structure. We prepared high-quality Bi$_2$Se$_{3-x}$Te$_x$ thin films on GaAs(111)B substrates using molecular beam epitaxy, characterized with Raman spectroscopy, x-ray diffraction and photoelectron spectroscopy. It is found that when Se is replaced by Te, the preferred substituting sites are the middle layer at $0 < x < 1$, and this is also valid for Se substituting Te at $2 < x < 3$. In the middle region, the substituting atoms prefer to go to the first and the fifth layer.
Received: 20 March 2020      Published: 21 June 2020
PACS:  75.78.-n (Magnetization dynamics)  
  75.47.Lx (Magnetic oxides)  
  75.30.Ds (Spin waves)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the National Natural Science Foundation of China (Grant Nos. 61474061, 61674079, and 61974061), and the Jiangsu ShuangChuang Program and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20140054).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/077501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/077501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yizhe Sun
Moorthi Kanagaraj
Qinwu Gao
Yafei Zhao
Jiai Ning
Kunpeng Zhang
Xianyang Lu
Liang He
and Yongbing Xu
[1] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W and Goldberger J E 2013 ACS Nano 7 2898
[2] Kou X F, He L, Xiu F X, Lang M R, Liao Z M, Wang Y, Fedorov A V, Yu X X, Tang J S, Huang G, Jiang X W, Zhu J F, Zou J and Wang K L 2011 Appl. Phys. Lett. 98 242102
[3] Liu W, Xu Y, He L, van der Laan G , Zhang R and Wang K 2019 Sci. Adv. 5 aav2088
[4] Liu W, West D, He L, Xu Y, Liu J, Wang K, Wang Y, van der Laan G , Zhang R, Zhang S and Wang K L 2015 ACS Nano 9 10237
[5] Liu W, He L, Xu Y, Murata K, Onbasli M C, Lang M, Maltby N J, Li S, Wang X, Ross C A, Bencok P, van der Laan G , Zhang R and Wang K L 2015 Nano Lett. 15 764
[6] He L, Kou X and Wang K L 2013 Phys. Status Solidi RRL 7 50
[7] Xiu F, Meyer N, Kou X, He L, Lang M, Wang Y, Yu X, Fedorov A V, Zou J and Wang K L 2012 Sci. Rep. 2 669
[8] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[9] Kim Y, Chen X, Wang Z, Shi J, Miotkowski I, Chen Y P, Sharma P A, Lima Sharma A L, Hekmaty M A, Jiang Z and Smirnov D 2012 Appl. Phys. Lett. 100 071907
[10] Qiao H, Yuan J, Xu Z, Chen C, Lin S, Wang Y, Song J, Liu Y, Khan Q, Hoh H Y, Pan C X, Li S and Bao Q 2015 ACS Nano 9 1886
[11] Wang Z F, Su N and Liu F 2013 Nano Lett. 13 2842
[12] Xiong J, Luo Y, Khoo Y, Jia S, Cava R J and Ong N P 2012 Phys. Rev. B 86 045314
[13] Ren Z, Taskin A A, Sasaki S, Segawa K and Ando Y 2010 Phys. Rev. B 82 241306
[14] Soni A, Yanyuan Z, Ligen Y, Aik M K K, Dresselhaus M S and Xiong Q 2012 Nano Lett. 12 1203
[15] Teague M, Chu H, Xiu F X, He L, Wang K L and Yeh N C 2012 Solid State Commun. 152 747
[16] Wang W, Li L, Zou W, He L, Song F, Zhang R, Wu X and Zhang F 2015 Sci. Rep. 5 7931
[17] Lu X, Atkinson L J, Kuerbanjiang B, Liu B, Li G, Wang Y, Wang J, Ruan X, Wu J, Evans R F L, Lazarov V K, Chantrell R W and Xu Y 2019 Appl. Phys. Lett. 114 192406
[18] Wang W, Zou W Q, He L, Peng J, Zhang R, Wu X S and Zhang F M 2015 J. Phys. D 48 205305
[19] He L, Xiu F, Yu X, Teague M, Jiang W, Fan Y, Kou X, Lang M, Wang Y, Huang G, Yeh N C and Wang K L 2012 Nano Lett. 12 1486
[20] Lu Y X, Claydon J S, Xu Y B, Thompson S M, Wilson K and van der Laan G 2004 Phys. Rev. B 70 233304
[21] Liu Z, Brandt R, Hellwig O, Florez S, Thomson T, Terris B and Schmidt H 2011 J. Magn. Magn. Mater. 323 1623
[22] Wang K, Liu Y, Wang W, Meyer N, Bao L H, He L, Lang M R, Chen Z G, Che X Y, Post K, Zou J, Basov D N, Wang K L and Xiu F 2013 Appl. Phys. Lett. 103 031605
[23] Lang M, He L, Xiu F, Yu X, Tang J, Wang Y, Kou X, Jiang W, Fedorov A V and Wang K L 2012 ACS Nano 6 295
[24] Liu R, Tan X, Ren G, Liu Y, Zhou Z, Liu C, Lin Y and Nan C 2017 Crystals 7 257
[25] Zhang J, Peng Z, Soni A, Zhao Y, Xiong Y, Peng B, Wang J, Dresselhaus M S and Xiong Q 2011 Nano Lett. 11 2407
[26] Amaladass E P, Devidas T R, Sharma S, Sundar C S, Mani A and Bharathi A 2016 J. Phys.: Condens. Matter 28 075003
[27] Devidas T R, Abhirami S, Sharma S, Amaladas E P and Mani A 2018 Europhys. Lett. 121 67001
[28] Xiao C, Qin X, Zhang J, An R, Xu J, Li K, Cao B, Yang J, Ye B and Xie Y 2012 J. Am. Chem. Soc. 134 18460
[29] Zhao Y and Burda C 2009 ACS Appl. Mater. & Interfaces 1 1259
[30] Yuan J, Zhao M, Yu W, Lu Y, Chen C, Xu M, Li S, Loh K and Qiaoliang B 2015 Materials 8 5007
[31] Kou X F, Jiang W J, Lang M R, Xiu F X, He L, Wang Y, Wang Y, Yu X X, Fedorov A V, Zhang P and Wang K L 2012 J. Appl. Phys. 112 063912
[32] Xiu F, He L, Wang Y, Cheng L, Chang L T, Lang M, Huang G, Kou X, Zhou Y, Jiang X, Chen Z, Zou J, Shailos A and Wang K L 2011 Nat. Nanotechnol. 6 216
[33] Shahil K M F, Hossain M Z, Goyal V and Balandin A A 2012 J. Appl. Phys. 111 054305
[34] Steinberg H, Laloë J B, Fatemi V, Moodera J S and Jarillo-Herrero P 2011 Phys. Rev. B 84 233101
[35] Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z and Wu K 2009 Appl. Phys. Lett. 95 053114
[36] Chis V, Sklyadneva I Y, Kokh K A, Volodin V A, Tereshchenko O E and Chulkov E V 2012 Phys. Rev. B 86 174304
[37] Zhao S Y F, Beekman C, Sandilands L J, Bashucky J E J, Kwok D, Lee N, LaForge A D, Cheong S W and Burch K S 2011 Appl. Phys. Lett. 98 141911
[38] Wiese J and Muldawer L 1960 J. Phys. Chem. Solids 15 13
[39] Bao L, He L, Meyer N, Kou X, Zhang P, Chen Z G, Fedorov A V, Zou J, Riedemann T M, Lograsso T A, Wang K L, Tuttle G and Xiu F 2012 Sci. Rep. 2 726
[40] Benjamin S L, de Groot C K, Gurnani C, Hawken S L, Hector A L, Huang R, Jura M, Levason W, Reid E, Reid G 2018 J. Mater. Chem. C 6 7734
[41] Checkelsky J G, Hor Y S, Cava R J and Ong N P 2011 Phys. Rev. Lett. 106 196801
[42] Wu P, Chen H, Yang C, Gan W, Muhammad Z and Song L 2016 AIP Adv. 6 075303
[43] Richter W and Becker C R 1977 Phys. Stat. Sol. (b) 84 619
[44] Cava R J, Ji H, Fuccillo M K, Gibson Q D and Hor Y S 2013 J. Mater. Chem. C 1 3176
Related articles from Frontiers Journals
[1] Yangping Wang, Hongyan Zhou, Yibing Zhao, Fufu Liu, and Changjun Jiang. Low Voltage Reversible Manipulation of Ferromagnetic Resonance Response in CoFeB/HfO$_{2}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 077501
[2] Mao Yang, Xianyang Lu, Bo Liu, Xuezhong Ruan, Junran Zhang, Xiaoqian Zhang, Dawei Huang, Jing Wu, Jun Du, Bo Liu, Hao Meng, Liang He, and Yongbing Xu. Tuning of the Magnetic Damping Parameter by Varying Cr Composition in Fe$_{1-x}$Cr$_x$ Alloy[J]. Chin. Phys. Lett., 2020, 37(10): 077501
[3] Chao Yang, Zheng-Chuan Wang, and Gang Su. Magnetization Reversal of Single-Molecular Magnets by a Spin-Polarized Current[J]. Chin. Phys. Lett., 2020, 37(8): 077501
[4] Qingwei Fu, Yong Li, Lina Chen, Fusheng Ma, Haotian Li, Yongbing Xu, Bo Liu, Ronghua Liu, and Youwei Du. Mode Structures and Damping of Quantized Spin Waves in Ferromagnetic Nanowires[J]. Chin. Phys. Lett., 2020, 37(8): 077501
[5] Xiao-Kuo Yang, Bin Zhang, Jia-Hao Liu, Ming-Liang Zhang, Wei-Wei Li, Huan-Qing Cui, Bo Wei. Shape Anisotropy and Resonance Mode Guided Reliable Interconnect Design for In-plane Magnetic Logic[J]. Chin. Phys. Lett., 2018, 35(5): 077501
[6] Yuan-Yuan Guo, Fei-Fei Zhao, Hai-Bin Xue, Zhe-Jie Liu. Zero-Magnetic-Field Oscillation of Spin Transfer Nano-Oscillator with a Second-Order-Perpendicular-Anisotropy Free Layer[J]. Chin. Phys. Lett., 2016, 33(03): 077501
[7] CHEN Cheng, PIAO Hong-Guang, SHIM Je-Ho, PAN Li-Qing, KIM Dong-Hyun. RC-Circuit-Like Dynamic Characteristic of the Magnetic Domain Wall in Flat Ferromagnetic Nanowires[J]. Chin. Phys. Lett., 2015, 32(08): 077501
Viewed
Full text


Abstract