CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid |
Qi-Long Cao*, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang |
Key Laboratory of Computational Physics, Yibin University, Yibin 644007, China |
|
Cite this article: |
Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang et al 2020 Chin. Phys. Lett. 37 076201 |
|
|
Abstract Transport and structural properties of metallic glass-forming liquid Cu$_{50}$Zr$_{50}$ are investigated by molecular dynamics simulation, under high pressures from 1 bar to 70 GPa. The following results have been obtained: (i) reversals of component diffusion coefficients ($D_{\rm Cu}$ and $D_{\rm Zr}$) are observed at the reversion pressure. At low pressures below the reversion pressure, $D_{\rm Cu}/D_{\rm Zr}$ decreases from about 1.4 to 1.0. At high pressures above the reversion pressure, $D_{\rm Cu}/D_{\rm Zr}$ decreases more rapidly from 1.0 to about 0.7. (ii) Component diffusion coefficients decay exponentially with pressure up to reversion pressure, then the strength of the exponential dependence changes, while the pressure-dependent behavior of viscosity can be well described by a single exponential relation over the full range of pressure. (iii) The Stokes–Einstein relation (SER) works well at low pressures and starts to be violated at the breakdown pressure. For glass-forming liquid Cu$_{50}$Zr$_{50}$ along the 2000 K isotherm, the breakdown pressure equals the reversion pressure of component diffusion coefficients and is about 35 GPa. (iv) The pressure dependences of the ratio between component diffusion coefficients can be used to predict the breakdown pressure of SER along isotherm. The validity of SER and the reversals of component diffusion coefficients are found to be related to the pressure dependence of the relative total fractions of predominant Voronoi polyhedrons around individual components.
|
|
Received: 09 April 2020
Published: 21 June 2020
|
|
PACS: |
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
66.20.-d
|
(Viscosity of liquids; diffusive momentum transport)
|
|
61.20.-p
|
(Structure of liquids)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11704329.) |
|
|
[1] | Roland C M, Hensel-Bielowka S, Paluch M and Casalini R 2005 Rep. Prog. Phys. 68 1405 |
[2] | Ngai K L and Capaccioli S 2008 J. Phys.: Condens. Matter 20 244101 |
[3] | Lü Y, Cheng H and Chen M 2012 J. Chem. Phys. 136 214505 |
[4] | Han X J, Li J G and Schober H R 2016 J. Chem. Phys. 144 124505 |
[5] | Cao Q, Wang P and Huang D 2020 Phys. Chem. Chem. Phys. 22 2557 |
[6] | Jaiswal A, Egami T and Zhang Y 2015 Phys. Rev. B 91 134204 |
[7] | Hu Y C, Li F X, Li M Z, Bai H Y and Wang W H 2016 J. Appl. Phys. 119 205108 |
[8] | Jaiswal A, Egami T, Kelton K F, Schweizer K S and Zhang Y 2016 Phys. Rev. Lett. 117 205701 |
[9] | Xu L, Mallamace F, Yan Z, Starr F W, Buldyrev S V and Eugene Stanley H 2009 Nat. Phys. 5 565 |
[10] | Pan S, Wu Z W, Wang W H, Li M Z and Xu L 2017 Sci. Rep. 7 39938 |
[11] | Lad K N, Jakse N and Pasturel A 2012 J. Chem. Phys. 136 104509 |
[12] | Mukherjee A, Bhattacharyya S and Bagchi B 2002 J. Chem. Phys. 116 4577 |
[13] | Hu Y, Guan P, Wang Q, Yang Y and Bai H 2017 J. Chem. Phys. 146 024507 |
[14] | Cheng Y Q, Ma E and Sheng H W 2009 Phys. Rev. Lett. 102 244501 |
[15] | Ding J, Asta M and Ritchie R O 2016 Phys. Rev. B 93 140204(R) |
[16] | Plimpton S 1995 J. Comput. Phys. 117 1 |
[17] | Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press) |
[18] | Hu Y C, Li F X, Wang W H, Li M Z, Bai H Y and Wang W H 2015 Nat. Commun. 6 8310 |
[19] | Han X J and Schober H R 2011 Phys. Rev. B 83 224201 |
[20] | Zhou Y H, Han X J and Li J G 2019 J. Non-Cryst. Solids 517 83 |
[21] | Kawasaki T, Araki T and Tanaka H 2007 Phys. Rev. Lett. 99 215701 |
[22] | Jakse N, Nguyen T L T and Pasturel A 2012 J. Chem. Phys. 137 204504 |
[23] | Jakse N and Pasturel A 2014 J. Chem. Phys. 141 234504 |
[24] | Cheng Y Q, Sheng H W and Ma E 2008 Phys. Rev. B 78 014207 |
[25] | Jakse N, Nguyen T L T, Pasturel A, Jakse N, Nguyen T L T and Pasturel A 2013 J. Appl. Phys. 114 063514 |
[26] | Li C H, Luan Y W, Han X J and Li J G 2017 J. Non-Cryst. Solids 458 107 |
[27] | Trady S, Hasnaoui A and Mazroui M 2017 J. Non-Cryst. Solids 468 27 |
[28] | Yu C, Hui X, Chen X, Liu X, Lin D, Liu Z and Chen G 2010 Sci. Chin. Technol. Sci. 53 3175 |
[29] | Saida J, Itoh K, Sato S and Imafuku M 2009 J. Phys.: Condens. Matter 21 375104 |
[30] | Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Besser M F, Kreyssig A, Goldman A I, Wessels V, Sahu K K, Kelton K F, Hyers R W, Canepari S and Rogers J R 2010 Philos. Mag. 90 3795 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|