Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 076201    DOI: 10.1088/0256-307X/37/7/076201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid
Qi-Long Cao*, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang 
Key Laboratory of Computational Physics, Yibin University, Yibin 644007, China
Cite this article:   
Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang  et al  2020 Chin. Phys. Lett. 37 076201
Download: PDF(579KB)   PDF(mobile)(566KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Transport and structural properties of metallic glass-forming liquid Cu$_{50}$Zr$_{50}$ are investigated by molecular dynamics simulation, under high pressures from 1 bar to 70 GPa. The following results have been obtained: (i) reversals of component diffusion coefficients ($D_{\rm Cu}$ and $D_{\rm Zr}$) are observed at the reversion pressure. At low pressures below the reversion pressure, $D_{\rm Cu}/D_{\rm Zr}$ decreases from about 1.4 to 1.0. At high pressures above the reversion pressure, $D_{\rm Cu}/D_{\rm Zr}$ decreases more rapidly from 1.0 to about 0.7. (ii) Component diffusion coefficients decay exponentially with pressure up to reversion pressure, then the strength of the exponential dependence changes, while the pressure-dependent behavior of viscosity can be well described by a single exponential relation over the full range of pressure. (iii) The Stokes–Einstein relation (SER) works well at low pressures and starts to be violated at the breakdown pressure. For glass-forming liquid Cu$_{50}$Zr$_{50}$ along the 2000 K isotherm, the breakdown pressure equals the reversion pressure of component diffusion coefficients and is about 35 GPa. (iv) The pressure dependences of the ratio between component diffusion coefficients can be used to predict the breakdown pressure of SER along isotherm. The validity of SER and the reversals of component diffusion coefficients are found to be related to the pressure dependence of the relative total fractions of predominant Voronoi polyhedrons around individual components.
Received: 09 April 2020      Published: 21 June 2020
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  66.20.-d (Viscosity of liquids; diffusive momentum transport)  
  61.20.-p (Structure of liquids)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11704329.)
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/076201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/076201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi-Long Cao
Duo-Hui Huang 
Jun-Sheng Yang 
and Fan-Hou Wang 
[1] Roland C M, Hensel-Bielowka S, Paluch M and Casalini R 2005 Rep. Prog. Phys. 68 1405
[2] Ngai K L and Capaccioli S 2008 J. Phys.: Condens. Matter 20 244101
[3] Lü Y, Cheng H and Chen M 2012 J. Chem. Phys. 136 214505
[4] Han X J, Li J G and Schober H R 2016 J. Chem. Phys. 144 124505
[5] Cao Q, Wang P and Huang D 2020 Phys. Chem. Chem. Phys. 22 2557
[6] Jaiswal A, Egami T and Zhang Y 2015 Phys. Rev. B 91 134204
[7] Hu Y C, Li F X, Li M Z, Bai H Y and Wang W H 2016 J. Appl. Phys. 119 205108
[8] Jaiswal A, Egami T, Kelton K F, Schweizer K S and Zhang Y 2016 Phys. Rev. Lett. 117 205701
[9] Xu L, Mallamace F, Yan Z, Starr F W, Buldyrev S V and Eugene Stanley H 2009 Nat. Phys. 5 565
[10] Pan S, Wu Z W, Wang W H, Li M Z and Xu L 2017 Sci. Rep. 7 39938
[11] Lad K N, Jakse N and Pasturel A 2012 J. Chem. Phys. 136 104509
[12] Mukherjee A, Bhattacharyya S and Bagchi B 2002 J. Chem. Phys. 116 4577
[13] Hu Y, Guan P, Wang Q, Yang Y and Bai H 2017 J. Chem. Phys. 146 024507
[14] Cheng Y Q, Ma E and Sheng H W 2009 Phys. Rev. Lett. 102 244501
[15] Ding J, Asta M and Ritchie R O 2016 Phys. Rev. B 93 140204(R)
[16] Plimpton S 1995 J. Comput. Phys. 117 1
[17]Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press)
[18] Hu Y C, Li F X, Wang W H, Li M Z, Bai H Y and Wang W H 2015 Nat. Commun. 6 8310
[19] Han X J and Schober H R 2011 Phys. Rev. B 83 224201
[20] Zhou Y H, Han X J and Li J G 2019 J. Non-Cryst. Solids 517 83
[21] Kawasaki T, Araki T and Tanaka H 2007 Phys. Rev. Lett. 99 215701
[22] Jakse N, Nguyen T L T and Pasturel A 2012 J. Chem. Phys. 137 204504
[23] Jakse N and Pasturel A 2014 J. Chem. Phys. 141 234504
[24] Cheng Y Q, Sheng H W and Ma E 2008 Phys. Rev. B 78 014207
[25] Jakse N, Nguyen T L T, Pasturel A, Jakse N, Nguyen T L T and Pasturel A 2013 J. Appl. Phys. 114 063514
[26] Li C H, Luan Y W, Han X J and Li J G 2017 J. Non-Cryst. Solids 458 107
[27] Trady S, Hasnaoui A and Mazroui M 2017 J. Non-Cryst. Solids 468 27
[28] Yu C, Hui X, Chen X, Liu X, Lin D, Liu Z and Chen G 2010 Sci. Chin. Technol. Sci. 53 3175
[29] Saida J, Itoh K, Sato S and Imafuku M 2009 J. Phys.: Condens. Matter 21 375104
[30] Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Besser M F, Kreyssig A, Goldman A I, Wessels V, Sahu K K, Kelton K F, Hyers R W, Canepari S and Rogers J R 2010 Philos. Mag. 90 3795
Related articles from Frontiers Journals
[1] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 076201
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 076201
[3] Caizi Zhang, Fangfei Li, Xinmiao Wei, Mengqi Guo, Yingzhan Wei, Liang Li, Xinyang Li, and Qiang Zhou. Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$[J]. Chin. Phys. Lett., 2022, 39(9): 076201
[4] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 076201
[5] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 076201
[6] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 076201
[7] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 076201
[8] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 076201
[9] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 076201
[10] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 076201
[11] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation[J]. Chin. Phys. Lett., 2020, 37(6): 076201
[12] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 076201
[13] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation *[J]. Chin. Phys. Lett., 0, (): 076201
[14] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 076201
[15] Yanling Wu, Xia Yin, Jiazila Hasaien, Yang Ding, Jimin Zhao. High-Pressure Ultrafast Dynamics in Sr$_{2}$IrO$_{4}$: Pressure-Induced Phonon Bottleneck Effect[J]. Chin. Phys. Lett., 2020, 37(4): 076201
Viewed
Full text


Abstract