CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Comparison of Cavities Formed in Single Crystalline and Polycrystalline $\alpha$-SiC after H Implantation |
Qing Liao1, Long Kang2, Tong-Min Zhang2, Hui-Ping Liu2, Tao Wang3, Xiao-Gang Li2, Jin-Yu Li2, Zhen Yang4, and Bing-Sheng Li1* |
1State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China 2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China 3Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China 4Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
|
|
Cite this article: |
Qing Liao, Long Kang, Tong-Min Zhang et al 2020 Chin. Phys. Lett. 37 076102 |
|
|
Abstract Cavities and extended defects formed in single crystalline and polycrystalline $\alpha$-SiC implanted with H$^{+}$ ions are compared. The samples are investigated by cross-sectional transmission electron microscopy. H$_{2}$ bubbles are formed during H implantation and H$_{2}$ molecules escape the sample to form cavities during thermal annealing at 1100℃. Microcracks and the extended defects prefer to nucleate in single crystalline $\alpha$-SiC, but not polycrystalline $\alpha$-SiC. Grain boundaries can account for the experimental results. The formation of cavities on grain boundaries is investigated.
|
|
Received: 19 March 2020
Published: 21 June 2020
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. U1832133 and 11905206). |
|
|
[1] | Choyke W J and Pernsl G 1997 Mater. Res. Soc. Bull. 22 25 |
[2] | Park C H, Cheong B H, Lee K H and Chang K J 1994 Phys. Rev. B 49 4485 |
[3] | Snead L L, Nozawa T, Katoh Y, Byun T S, Kondo S and Petti D A 2007 J. Nucl. Mater. 317 329 |
[4] | Ting Q Y, Lee T H, Werner P, Gosele U, Bergmann R B and Werner J H 1997 J. Electrochem. Soc. 144 L111 |
[5] | Daghbouj N, Li B S, Karlik M and Delcemy A 2019 Appl. Surf. Sci. 466 141 |
[6] | Zhang L and Li B S 2017 Physica B 508 104 |
[7] | Li B S, Wang Z G and Jin Y F 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 316 239 |
[8] | Jia Q, Huang K, You T G, Yi A L, Lin J J, Zhang S B, Zhou M, Zhang B, Zhang B, Yu W J, Ou X and Wang X 2018 Appl. Phys. Lett. 112 192102 |
[9] | Huang K, Jia Q, You T G, Zhang S B, Lin J J, Zhang R C, Zhou M, Yu W J, Zhang B, Ou X and Wang X 2017 Nucl. Instrum. Methods Phys. Res. Sect. B 406 656 |
[10] | Gregory R B, Wetteroth T A, Wilson S R, Holland O W and Thomas D K 1999 Appl. Phys. Lett. 75 2623 |
[11] | Daghbouj N, Li B S, Callisti M, Sen H S, Jin J, Ou X, Karlik M and Polcar T 2020 Acta Mater 188 609 |
[12] | Sawan M E 2012 Fusion Eng. Deg. 87 551 |
[13] | Liu H P, Li J Y and Li B S 2018 Chin. Phys. Lett. 35 096103 |
[14] | Li B S, Du Y Y, Wang Z G, Wei K F, Zhang H P, Yao C F, Chang H L, Jun J R, Cui M H, Sheng Y B, Pang L L, Zhu Y B, Gao X, Luo P, Zhu H P, Wang J and Wang D 2015 Vacuum 113 75 |
[15] | Jiang W, Weber W J, Thevuthasan S and Grotzschel R 2000 Nucl. Instrum. Methods Phys. Res. Sect. B 166 374 |
[16] | http://www.srim.org |
[17] | Li B S, Liu H P, Xu L J, Wang J, Song J, Peng D P, Li J H, Zhang F Q, Kang L, Zhang T M, Tang H X and Xiong A L 2020 Appl. Surf. Sci. 499 143911 |
[18] | Li B S, Liu H P, Kang L, Zhang T M, Xu L J and Xiong A L 2019 J. Eur. Ceram. Soc. 39 4307 |
[19] | Sun J J, You Y W, Xu Y C, Wu X B, Li B S and Liu C S 2020 J. Eur. Ceramic Soc. (in press) |
[20] | Trinkaus H 2006 Radiat. Effects 101 91 |
[21] | Liu Y Z, Li B S, Lin H and Zhang L 2017 Chin. Phys. Lett. 34 076101 |
[22] | Muta S, Sugiyama H, Kimura T and Tanabe T 2004 Jpn. J. Appl. Phys. 43 1076 |
[23] | Qin W J, Ren F, Doerner R P, Wei G, Lv Y W, Chang S, Tang M, Deng H Q, Jiang C Z and Wang Y Q 2018 Acta Mater. 153 147 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|