Chin. Phys. Lett.  2020, Vol. 37 Issue (5): 050301    DOI: 10.1088/0256-307X/37/5/050301
GENERAL |
Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model
Wen-Ya Song, Fu-Lin Zhang**
Department of Physics, School of Science, Tianjin University, Tianjin 300072
Cite this article:   
Wen-Ya Song, Fu-Lin Zhang 2020 Chin. Phys. Lett. 37 050301
Download: PDF(445KB)   PDF(mobile)(437KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the algebraic structure of the one-dimensional Dirac oscillator by extending the concept of spin symmetry to a noncommutative case. An $SO(4)$ algebra is found connecting the eigenstates of the Dirac oscillator, in which the two elements of Cartan subalgebra are conserved quantities. Similar results are obtained in the Jaynes–Cummings model.
Received: 06 February 2020      Published: 25 April 2020
PACS:  03.65.Fd (Algebraic methods)  
  03.65.Pm (Relativistic wave equations)  
  42.50.-p (Quantum optics)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11675119, 11575125, and 11105097).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/5/050301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I5/050301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Ya Song
Fu-Lin Zhang
[1]Dirac P A M 1982 The Principles of Quantum Mechanics (Oxford: Oxford University Press)
[2]Zee A 2010 Quantum Field Theory in a Nutshell (Princeton: Princeton University Press)
[3]Moshinsky M and Szczepaniak A 1989 J. Phys. A 22 L817
[4]Sadurní E 2010 AIP Conf. Proc. 1334 249
[5]Franco-Villafa ne J A, Sadurní E, Barkhofen S, Kuhl U, Mortessagne F and Seligman T H 2013 Phys. Rev. Lett. 111 170405
[6]Grineviciute J and Halderson D 2012 Phys. Rev. C 85 054617
[7]Romera E 2011 Phys. Rev. A 84 052102
[8]Bermudez A, Martin-Delgado M A and Solano E 2007 Phys. Rev. A 76 041801
[9]Bermudez A, Martin-Delgado M A and Solano E 2007 Phys. Rev. Lett. 99 123602
[10]Lamata L, León J, Schätz T and Solano E 2007 Phys. Rev. Lett. 98 253005
[11]Torres J M, Sadurní E and Seligman T H 2010 AIP Conf. Proc. 1323 301
[12]Sadurní E, Seligman T H and Mortessagne F 2010 New J. Phys. 12 053014
[13]Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[14]Greiner W and Müller B 1994 Quantum Mechanics (Symmetries) (New York: Springer)
[15]De Lange O L and Raab R E 1991 Operator Methods in Quantum Mechanics (Oxford: Clarendon Press)
[16]De Lange O L 1991 J. Phys. A 24 667
[17]Benitez J 1990 Phys. Rev. Lett. 64 1643
[18]Zhou J, Su H Y, Zhang F L, Zhang H B and Chen J L 2018 Chin. Phys. Lett. 35 010302
[19]Ge M L, Kwek L C, Liu Y, Oh C H and Wang X B 2000 Phys. Rev. A 62 052110
[20]Ginocchio J N 2005 Phys. Rep. 414 165
[21]Ginocchio J N 2004 Phys. Rev. C 69 034318
[22]Ginocchio J N 2005 Phys. Rev. Lett. 95 252501
[23]Zhang F L, Fu B and Chen J L 2008 Phys. Rev. A 78 040101
[24]Zhang F L, Song C and Chen J L 2009 Ann. Phys. 324 173
[25]Zhang F L, Fu B and Chen J L 2009 Phys. Rev. A 80 054102
[26]Chen J L, Liu Y and Ge M L 1998 J. Phys. A 31 6473
[27]Cao B X and Zhang F L 2019 arXiv:1908.09352
[28]Moreno M and Zentella A 1989 J. Phys. A 22 L821
[29]Vedral V 2005 Modern Foundations of Quantum Optics (London: World Scientific Publishing Company)
[30]Irish E 2007 Phys. Rev. Lett. 99 173601
[31]Lu H X and Wang X Q 2000 Chin. Phys. 9 568
Related articles from Frontiers Journals
[1] Jie Zhou, Hong-Yi Su, Fu-Lin Zhang, Hong-Biao Zhang, Jing-Ling Chen. Solving the Jaynes–Cummings Model with Shift Operators Constructed by Means of the Matrix-Diagonalizing Technique[J]. Chin. Phys. Lett., 2018, 35(1): 050301
[2] Guang Yang, Wei Li, Li-Xiang Cen. Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model[J]. Chin. Phys. Lett., 2018, 35(1): 050301
[3] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 050301
[4] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 050301
[5] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 050301
[6] HUANG Jie-Hui, HU Li-Yun, WANG Lei, ZHU Shi-Yao. Separability Criterion for Bipartite States and Its Generalization to Multipartite Systems[J]. Chin. Phys. Lett., 2014, 31(04): 050301
[7] Joydeep Choudhury, Nirmal Kumar Sarkar, Ramendu Bhattacharjee. Infrared Spectra of PH3 and NF3: An Algebraic Approach[J]. Chin. Phys. Lett., 2013, 30(7): 050301
[8] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 050301
[9] Akpan N. Ikot, Ita O. Akpan. Bound State Solutions of the Schr?dinger Equation for a More General Woods–Saxon Potential with Arbitrary l-State[J]. Chin. Phys. Lett., 2012, 29(9): 050301
[10] M. Hamzavi, M. Movahedi, K.-E. Thylwe, and A. A. Rajabi. Approximate Analytical Solution of the Yukawa Potential with Arbitrary Angular Momenta[J]. Chin. Phys. Lett., 2012, 29(8): 050301
[11] KANG Jing, QU Chang-Zheng. Symmetry Groups and Gauss Kernels of the Schrödinger Equations with Potential Functions[J]. Chin. Phys. Lett., 2012, 29(7): 050301
[12] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 050301
[13] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 050301
[14] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 050301
[15] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 050301
Viewed
Full text


Abstract