GENERAL |
|
|
|
|
Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model |
Wen-Ya Song, Fu-Lin Zhang** |
Department of Physics, School of Science, Tianjin University, Tianjin 300072
|
|
Cite this article: |
Wen-Ya Song, Fu-Lin Zhang 2020 Chin. Phys. Lett. 37 050301 |
|
|
Abstract We study the algebraic structure of the one-dimensional Dirac oscillator by extending the concept of spin symmetry to a noncommutative case. An $SO(4)$ algebra is found connecting the eigenstates of the Dirac oscillator, in which the two elements of Cartan subalgebra are conserved quantities. Similar results are obtained in the Jaynes–Cummings model.
|
|
Received: 06 February 2020
Published: 25 April 2020
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11675119, 11575125, and 11105097). |
|
|
[1] | Dirac P A M 1982 The Principles of Quantum Mechanics (Oxford: Oxford University Press) | [2] | Zee A 2010 Quantum Field Theory in a Nutshell (Princeton: Princeton University Press) | [3] | Moshinsky M and Szczepaniak A 1989 J. Phys. A 22 L817 | [4] | Sadurní E 2010 AIP Conf. Proc. 1334 249 | [5] | Franco-Villafa ne J A, Sadurní E, Barkhofen S, Kuhl U, Mortessagne F and Seligman T H 2013 Phys. Rev. Lett. 111 170405 | [6] | Grineviciute J and Halderson D 2012 Phys. Rev. C 85 054617 | [7] | Romera E 2011 Phys. Rev. A 84 052102 | [8] | Bermudez A, Martin-Delgado M A and Solano E 2007 Phys. Rev. A 76 041801 | [9] | Bermudez A, Martin-Delgado M A and Solano E 2007 Phys. Rev. Lett. 99 123602 | [10] | Lamata L, León J, Schätz T and Solano E 2007 Phys. Rev. Lett. 98 253005 | [11] | Torres J M, Sadurní E and Seligman T H 2010 AIP Conf. Proc. 1323 301 | [12] | Sadurní E, Seligman T H and Mortessagne F 2010 New J. Phys. 12 053014 | [13] | Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89 | [14] | Greiner W and Müller B 1994 Quantum Mechanics (Symmetries) (New York: Springer) | [15] | De Lange O L and Raab R E 1991 Operator Methods in Quantum Mechanics (Oxford: Clarendon Press) | [16] | De Lange O L 1991 J. Phys. A 24 667 | [17] | Benitez J 1990 Phys. Rev. Lett. 64 1643 | [18] | Zhou J, Su H Y, Zhang F L, Zhang H B and Chen J L 2018 Chin. Phys. Lett. 35 010302 | [19] | Ge M L, Kwek L C, Liu Y, Oh C H and Wang X B 2000 Phys. Rev. A 62 052110 | [20] | Ginocchio J N 2005 Phys. Rep. 414 165 | [21] | Ginocchio J N 2004 Phys. Rev. C 69 034318 | [22] | Ginocchio J N 2005 Phys. Rev. Lett. 95 252501 | [23] | Zhang F L, Fu B and Chen J L 2008 Phys. Rev. A 78 040101 | [24] | Zhang F L, Song C and Chen J L 2009 Ann. Phys. 324 173 | [25] | Zhang F L, Fu B and Chen J L 2009 Phys. Rev. A 80 054102 | [26] | Chen J L, Liu Y and Ge M L 1998 J. Phys. A 31 6473 | [27] | Cao B X and Zhang F L 2019 arXiv:1908.09352 | [28] | Moreno M and Zentella A 1989 J. Phys. A 22 L821 | [29] | Vedral V 2005 Modern Foundations of Quantum Optics (London: World Scientific Publishing Company) | [30] | Irish E 2007 Phys. Rev. Lett. 99 173601 | [31] | Lu H X and Wang X Q 2000 Chin. Phys. 9 568 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|