Chin. Phys. Lett.  2020, Vol. 37 Issue (5): 050302    DOI: 10.1088/0256-307X/37/5/050302
GENERAL |
Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement
Wei-Min Shang1, Jie Zhou1, Hui-Xian Meng2, Jing-Ling Chen1**
1Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071
2School of Mathematics and Physics, North China Electric Power University, Beijing 102206
Cite this article:   
Wei-Min Shang, Jie Zhou, Hui-Xian Meng et al  2020 Chin. Phys. Lett. 37 050302
Download: PDF(538KB)   PDF(mobile)(537KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a scenario to increase the probability of probabilistic quantum deletion and to enhance the fidelity of approximate quantum deletion for two non-orthogonal states via weak measurement. More interestingly, by pretreating the given non-orthogonal states, the probability of probabilistic quantum deletion and fidelity of approximate quantum deletion can reach 1. Since outcomes of the weak measurement that we required are probabilistic, we perform the subsequent deleting process only when the outcome of weak measurement is "yes". Remarkably, we find that our scenario has better performance in quantum information process; for example, it costs less quantum resources and time.
Received: 03 January 2020      Published: 25 April 2020
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Supported by the Nankai Zhide Foundation, the Tianjin Research Innovation Project for Postgraduate Students (Grant No. 2019YJSB033), and the National Natural Science Foundation of China (Grant Nos. 11901317 and 11875167).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/5/050302       OR      https://cpl.iphy.ac.cn/Y2020/V37/I5/050302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei-Min Shang
Jie Zhou
Hui-Xian Meng
Jing-Ling Chen
[1]Dirac P A M 1930 The Principle of Quantum Mechanics (Cambridge: Cambridge University Press)
[2]Oszmaniec M, Grudka A, Horodecki M and Wójcik A 2016 Phys. Rev. Lett. 116 110403
[3]Barnum H, Caves C M, Fuchs C A, Jozsa R and Schumacher B 1996 Phys. Rev. Lett. 76 2818
[4]Pati A K 2002 Phys. Rev. A 66 062319
[5]Doosti M, Kianvash F and Karimipour V 2017 Phys. Rev. A 96 052318
[6]Piani M, Horodecki P and Horodecki R 2008 Phys. Rev. Lett. 100 090502
[7]Pati A K and Braunstein S L 2000 Nature 404 164
[8]Wootters W K and Zurek W H 1982 Nature 299 802
[9]Dieks D 1982 Phys. Lett. A 92 271
[10]Bužek V and Hillery M 1996 Phys. Rev. A 54 1844
[11]Fan H, Wang Y N, Jing L, Yue J D, Shi H D, Zhang Y L and Mu L Z 2014 Phys. Rep. 544 241
[12]Scarani V, Iblisdir S, Gisin N and Acin A 2005 Rev. Mod. Phys. 77 1225
[13]Landauer R 1961 IBM J. Res. Dev. 5 183
[14]Szilard L 1929 Z. Phys. 53 840
[15]Pati A K and Braunstein S L 2003 Phys. Lett. A 315 208
[16]Feng J, Gao Y F, Cao J W, Wang J S and Zhan M S 2001 Phys. Lett. A 292 12
[17]Hillery M and Bužek V 1997 Phys. Rev. A 56 1212
[18]Pati A K and Braunstein S L 2000 arXiv:quant-ph/0007121
[19]Kim Y S, Cho Y W, Ra Y S and Kim Y H 2009 Opt. Express 17 11978
[20]Wang M H and Cai Q Y 2019 Phys. Rev. A 99 012324
[21]Duan L M and Guo G C 1998 Phys. Lett. A 243 261
[22]Adhikari S and Choudhury B S 2006 Phys. Rev. A 73 054303
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 050302
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 050302
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 050302
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 050302
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 050302
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 050302
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 050302
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 050302
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 050302
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 050302
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 050302
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 050302
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 050302
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 050302
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 050302
Viewed
Full text


Abstract