CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio |
Da-Hong Su1,2,3, Yun Xu1,2,3**, Wen-Xin Wang2,4, Guo-Feng Song1,2,3 |
1Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049 3Beijing Key Laboratory of Inorganic Stretchable and Flexible Information Technology, Beijing 100083 4Institute of Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
Da-Hong Su, Yun Xu, Wen-Xin Wang et al 2020 Chin. Phys. Lett. 37 037301 |
|
|
Abstract The performance of type-II superlattice (T2SL) long-wavelength infrared devices is limited by crystalline quality of T2SLs. We optimize the process of growing molecular beam epitaxy deposition T2SL epi-layers on GaSb (100) to improve the material properties. Samples with identical structure but diverse In/Ga beam-equivalent pressure (BEP) ratio are studied by various methods, including high-resolution x-ray diffraction, atomic force microscopy and high-resolution transmission electron microscopy. We find that appropriately increasing the In/Ga BEP ratio contributes to improving the quality of T2SLs, but too large In BEP will much more easily cause a local strain, which can lead to more InSb islands in the InSb interfaces. The InSb islands melt in the InSb interfaces caused by the change of chemical potential of In atoms may result in the "nail" defects covering the whole T2SLs, especially the interfaces of GaSb-on-InAs. When the In/Ga BEP ratio is about 1, the T2SL material possesses a lower full width at half maximum of $+$1 first-order satellite peak, much smoother surface and excellently larger area uniformity.
|
|
Received: 22 November 2019
Published: 22 February 2020
|
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0402402 and 2016YFB0400601), the National Basic Research Program of China (Grant No. 2015CB351902), the National Science and Technology Major Project (2018ZX01005101-010), the National Natural Science Foundation of China (Grant Nos. 61835011 and U1431231), the Key Research Projects of the Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC004), and the Beijing Science and Technology Projects (Grant No. Z151100001615042). |
|
|
[1] | Sai-Halasz G A, Tsu R and Esaki L 1977 Appl. Phys. Lett. 30 651 | [2] | Wei Y, Gin A, Razeghi M and Brown G J 2002 Appl. Phys. Lett. 80 3262 | [3] | Johnson J L, Samoska L A, Gossard A C, Merz J L, Jack M D, Chapman G R, Baumgratz B A, Kasai K and Johnson S M 1996 J. Appl. Phys. 80 1116 | [4] | Csuk R, Barthel A, Sczepek R, Siewert B and Schwarz S 1987 J. Appl. Phys. 62 2545 | [5] | Aifer E H, Tischler J G, Warner J H, Vurgaftman I, Kim J C, Meyer J R, Bennett B R, Whitman L J, Jackson E M and Lorentzen J R 2005 Proc. SPIE 5732 259 | [6] | Mohseni H, Litvinov V I and Razeghi M 1998 Phys. Rev. B 58 15378 | [7] | Hao H Y, Wang G W, Wei X, Xi H, Xu Y Q, Liao Y Q, Yu Z, Ren Z W, Ni H Q and He Z H 2015 Infrared Phys. 72 276 | [8] | Chen J, Xu Q, Zhou Y, Jin J, Lin C and He L 2011 Nanoscale Res. Lett. 6 635 | [9] | Chen J, Yi Z, Xu Z, Xu J J, Chen Q Q, Chen H L and Li H 2013 J. Cryst. Growth 378 596 | [10] | Chen X D, Cao X C, Liang Z, Zhang L X and He Y J 2016 Opt. Quantum Electron. 48 84 | [11] | Rhiger D R, Bornfreund R E, Hill C J and Gunapala S D 2007 Proc. SPIE 6542 654202 | [12] | Walther M, Schmitz J, Rehm R, Kopta S, Fuchs F, Fleißner J, Cabanski W and Ziegler J 2005 J. Cryst. Growth 278 156 | [13] | Gunapala S D, Ting D Z, Hill C J, Soibel A and Rafol S B 2010 Proc. SPIE 7808 780802 | [14] | Rhiger and David R 2011 J. Electron. Mater. 40 1815 | [15] | Pullin M J, Hardaway H R, Heber J D and Phillips C C 1999 Appl. Phys. Lett. 75 3437 | [16] | Rogalski A and Martyniuk P 2005 Infrared Phys. 48 39 | [17] | Hoang A M, Chen G, Haddadi A, Pour S A and Razeghi M 2012 Appl. Phys. Lett. 100 211101 | [18] | Jiang Z, Sun Y Y, Guo C Y, Lv Y X, Hao H Y, Jiang D W, Wang G W, Xu Y Q and Niu Z C 2019 Chin. Phys. B 28 038504 | [19] | Rodriguez J B, Plis E, Bishop G, Sharma Y D, Kim H, Dawson L R and Krishna S 2007 Appl. Phys. Lett. 91 043514 | [20] | Connelly B C, Metcalfe G D, Shen H and Wraback M 2010 Appl. Phys. Lett. 97 251117 | [21] | Svensson S P, Donetsky D, Ding W, Maloney P and Belenky G 2009 Appl. Phys. Lett. 95 1897 | [22] | Wang G W, Xu Y Q, Gao J, Tang B, Ren Z W, He Z H and Niu Z C 2010 Chin. Phys. Lett. 27 077305 | [23] | Hua L I, Liu S, C E L L E K, Oray O, Ding D, S H E N, Xiao M, Steenbergen, Elizabeth H and Fan J 2013 J. Cryst. Growth 378 145 | [24] | Jackson E M, Boishin G I, Aifer E H, Bennett B R and Whitman L J 2004 J. Cryst. Growth 270 301 | [25] | Yu H L, Wu H Y, Zhu H J, Song G F and Xu Y 2016 Chin. Phys. Lett. 33 128103 | [26] | Zhang Y, Ma W Q, Cao Y L, Huang J L, Yang W, Kai C and Shao J 2011 IEEE J. Quantum Electron. 47 1475 | [27] | Haugan H J, Grazulis L, Brown G J, Mahalingam K and Tomich D H 2004 J. Cryst. Growth 261 471 | [28] | Haugan H J, Brown G J and Grazulis L 2011 J. Vac. Sci. & Technol. B 29 03C101 | [29] | Klin O, Snapi N, Cohen Y and Weiss E 2015 J. Cryst. Growth 425 54 | [30] | Grundmann M, Stier O and Bimberg D 1995 Phys. Rev. B 52 11969 | [31] | Ledentsov N N, Shchukin V A, Grundmann M, Kirstatedter N, Böhrer J, Schmidt O, Bimberg D, Ustinov V M, Egorov A Y and Zhukov A E 1996 Phys. Rev. B 54 8743 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|