Chin. Phys. Lett.  2020, Vol. 37 Issue (3): 038101    DOI: 10.1088/0256-307X/37/3/038101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
MBE Growth and Characterization of Strained HgTe (111) Films on CdTe/GaAs
Jian Zhang1,2, Shengxi Zhang1,2, Xiaofang Qiu1, Yan Wu1**, Qiang Sun3, Jin Zou3,4, Tianxin Li1,2, Pingping Chen1,2**
1State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083
2University of Chinese Academy of Sciences, Beijing 100049
3Materials Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
4Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
Cite this article:   
Jian Zhang, Shengxi Zhang, Xiaofang Qiu et al  2020 Chin. Phys. Lett. 37 038101
Download: PDF(2179KB)   PDF(mobile)(2175KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Strained HgTe thin films are typical three-dimensional topological insulator materials. Most works have focused on HgTe (100) films due to the topological properties resulting from uniaxial strain. In this study, strained HgTe (111) thin films are grown on GaAs (100) substrates with CdTe (111) buffer layers using molecular beam epitaxy (MBE). The optimal growth conditions for HgTe films are determined to be a growth temperature of 160$^{\circ}\!$C and an Hg/Te flux ratio of 200. The strains of HgTe films with different thicknesses are investigated by high-resolution x-ray diffraction, including reciprocal space mapping measurements. The critical thickness of HgTe (111) film on CdTe/GaAs is estimated to be approximately 284 nm by Matthews' equations, consistent with the experimental results. Reflection high-energy electron diffraction and high-resolution transmission electron microscopy investigations indicate that high-quality HgTe films are obtained. This exploration of the MBE growth of HgTe (111) films provides valuable information for further studies of HgTe-based topological insulators.
Received: 06 December 2019      Published: 22 February 2020
PACS:  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  68.55.-a (Thin film structure and morphology)  
  61.05.-a (Techniques for structure determination)  
  61.05.cp (X-ray diffraction)  
  68.37.Og (High-resolution transmission electron microscopy (HRTEM))  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11634009, 61874069, 1177041280 and 11574336), and Shanghai Science and Technology Foundation (Grant No.18JC1420401).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/3/038101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I3/038101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian Zhang
Shengxi Zhang
Xiaofang Qiu
Yan Wu
Qiang Sun
Jin Zou
Tianxin Li
Pingping Chen
[1]Lei W, Antoszewski J and Faraone L 2015 Appl. Phys. Rev. 2 041303
[2]Liu M, Wang C and Zhou L Q 2019 Chin. Phys. B 28 037804
[3]Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[4]König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[5]Brüne C, Liu C X, Novik E G, Hankiewicz E M, Buhmann H, Chen Y L, Qi X L, Shen Z X, Zhang S C and Molenkamp L W 2011 Phys. Rev. Lett. 106 126803
[6]Brüne C, Roth A, Novik E G, König M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J and Molenkamp L W 2010 Nat. Phys. 6 448
[7]Nowack K C, Spanton E M, Baenninger M, König M, Kirtley J R, Kalisky B, Ames C, Leubner P, Brüne C, Buhmann H, Molenkamp L W, Goldhaber-Gordon D and Moler K A 2013 Nat. Mater. 12 787
[8]Savchenko M L, Kozlov D A, Vasilev N N, Kvon Z D, Mikhailov N N, Dvoretsky S A and Kolesnikov A V 2019 Phys. Rev. B 99 195423
[9]Ballingall J M, Leopold D J, Wroge M L, Peterman D J, Morris B J and Broerman J G 1986 Appl. Phys. Lett. 49 871
[10]Oehling S, Ehinger M, Spahn W, Waag A, Becker C R and Landwehr G 1996 J. Appl. Phys. 79 748
[11]Dvoretsky S, Mikhailov N, Sidorov Yu, Shvets V, Danilov S, Wittman B and Ganichev S 2010 J. Electron. Mater. 39 918
[12]Ballet P, Thomas C, Baudry X, Bouvier C, Crauste O, Meunier T, Badano G, Veillerot M, Barnes J P, Jouneau P H and Levy L P 2014 J. Electron. Mater. 43 2955
[13]Selviga E, Tonheim C R, Kongshaug K O, Skauli T, Lorentzen T and Haakenaasen R 2007 J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 25 1776
[14]Thomasa C, Baudrya X, Barnesa J P, Veillerota M, Jouneaub P H, Pougetb S, Craustec O, Meunierc T, Lévyc L P and Ballet P 2015 J. Cryst. Growth 425 195
[15]Leubner P, Lunczer L, Brüne C, Buhmann H and Molenkamp L W 2016 Phys. Rev. Lett. 117 086403
[16]Feldman R D, Nakahara S, Opila R L, Austin R F and Boone T 1989 J. Cryst. Growth 98 581
[17]Schaake H F and Koestner R J 1988 J. Cryst. Growth 86 452
[18]Yang X Y, Wang G Y, Zhao C X, Zhu Z, Dong L, Li A M, Lv Y Y, Yao S H, Chen Y B, Guan D D, Li Y Y, Zheng H, Qian D, Liu C H, Chen Y L and Jia J F 2018 Chin. Phys. Lett. 35 026802
[19]Beugeling W, Kalesaki E, Delerue C, Niquet Y M, Vanmaekelbergh D and Smith C M 2015 Nat. Commun. 6 6316
[20]Liang F, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[21]Zaheer S, Young S M, Cellucci D, Teo J C Y, Kane C L, Mele E J and Rappe A M 2013 Phys. Rev. B 87 045202
[22]Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[23]Dresselhaus G 1955 Phys. Rev. 100 580
[24]Selvig E, Tonheim C R, Lorentzen T, Kongshaug K O, Skauli T and Haakenaasen R 2008 J. Electron. Mater. 37 1444
[25]Matthews J W and Blakeslee A E 1974 J. Cryst. Growth 27 118
Related articles from Frontiers Journals
[1] Ding-Ming Huang, Jie-Yin Zhang, Jian-Huan Wang, Wen-Qi Wei, Zi-Hao Wang, Ting Wang, and Jian-Jun Zhang. Bufferless Epitaxial Growth of GaAs on Step-Free Ge (001) Mesa[J]. Chin. Phys. Lett., 2021, 38(6): 038101
[2] Shuai Zhang, Yang Song, Hang Li, Jin-Mei Li, Kai Qian, Chen Liu, Jia-Ou Wang, Tian Qian, Yu-Yang Zhang, Jian-Chen Lu, Hong Ding, Xiao Lin, Jinbo Pan, Shi-Xuan Du, Hong-Jun Gao. Experimental Synthesis of Strained Monolayer Silver Arsenide on Ag(111) Substrates[J]. Chin. Phys. Lett., 2020, 37(6): 038101
[3] Shuai Zhang, Yang Song, Hang Li, Jin-Mei Li, Kai Qian, Chen Liu, Jia-Ou Wang, Tian Qian, Yu-Yang Zhang, Jian-Chen Lu, Hong Ding, Xiao Lin, Jinbo Pan, Shi-Xuan Du, Hong-Jun Gao. Experimental Synthesis of Strained Monolayer Silver Arsenide on Ag(111) Substrates *[J]. Chin. Phys. Lett., 0, (): 038101
[4] Lu Li, Zhi-Long Bao, Xun-Heng Ye, Jia-Wei Shen, Bo Yang, Gao-Xiang Ye, Xiang-Ming Tao. Nucleation, Growth, and Aggregation of Au Nanocrystals on Liquid Surfaces[J]. Chin. Phys. Lett., 2020, 37(2): 038101
[5] Yu-Wei Li, Xin Wang, Guan-Wen Li, Yao Wu, Yu-Zhu Pan, Yu-Bing Xu, Jing Chen, Wei Lei. Fast Liquid Phase Epitaxial Growth for Perovskite Single Crystals[J]. Chin. Phys. Lett., 2020, 37(1): 038101
[6] Han Xu, Zhen-Lin Luo, Chang-Gan Zeng, Chen Gao. Van der Waals Epitaxy of Anatase TiO$_{2}$ on mica and Its Application as Buffer Layer[J]. Chin. Phys. Lett., 2019, 36(7): 038101
[7] Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu. Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond[J]. Chin. Phys. Lett., 2017, 34(7): 038101
[8] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of GaSb on GaAs Substrates with Compositionally Graded LT-GaAs$_{x}$Sb$_{1-x}$ Buffer Layers[J]. Chin. Phys. Lett., 2017, 34(1): 038101
[9] Hai-Long Yu, Hao-Yue Wu, Hai-Jun Zhu, Guo-Feng Song, Yun Xu. Molecular Beam Epitaxy of Zero Lattice-Mismatch InAs/GaSb Type-II Superlattice[J]. Chin. Phys. Lett., 2016, 33(12): 038101
[10] Ming Zhou, Yuan Cai, Yao-Peng Li, Ding-Quan Liu. Durability of Ultra-Thin Silver Films and Silver–Gold Alloy Films under UV Irradiation[J]. Chin. Phys. Lett., 2016, 33(10): 038101
[11] SUN Qing-Ling, WANG Lu, WANG Wen-Qi, SUN Ling, LI Mei-Cheng, WANG Wen-Xin, JIA Hai-Qiang, ZHOU Jun-Ming, CHEN Hong. Growth and Characterization of InAs1?xSbx with Different Sb Compositions on GaAs Substrates[J]. Chin. Phys. Lett., 2015, 32(10): 038101
[12] WANG Jun, HU Hai-Yang, HE Yun-Rui, DENG Can, WANG Qi, DUAN Xiao-Feng, HUANG Yong-Qing, REN Xiao-Min. Defect Reduction in GaAs/Si Films with the a-Si Buffer Layer Grown by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2015, 32(08): 038101
[13] MU Qing-Qing, LIU Lin-Fei, LI Yi-Jie. Fabrication of IBAD-MgO and PLD-CeO2 Layers for YBCO Coated Conductors[J]. Chin. Phys. Lett., 2015, 32(07): 038101
[14] HE Jie-Hui, JIANG Li-Qun, QIU Jing-Lan, CHEN Lan, WU Ke-Hui. Growth of Atomically Flat Ultra-Thin Ag Films on Si(111) by Introducing a √3×√3-Ga Buffer Layer[J]. Chin. Phys. Lett., 2014, 31(12): 038101
[15] ZHANG Peng, LI Shi-Bin, YU Hong-Ping, WU Zhi-Ming, CHEN Zhi, JIANG Ya-Dong. Polarization Induced High Al Composition AlGaN p–n Junction Grown on Silicon Substrates[J]. Chin. Phys. Lett., 2014, 31(11): 038101
Viewed
Full text


Abstract