CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
MBE Growth and Characterization of Strained HgTe (111) Films on CdTe/GaAs |
Jian Zhang1,2, Shengxi Zhang1,2, Xiaofang Qiu1, Yan Wu1**, Qiang Sun3, Jin Zou3,4, Tianxin Li1,2, Pingping Chen1,2** |
1State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 2University of Chinese Academy of Sciences, Beijing 100049 3Materials Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia 4Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
|
|
Cite this article: |
Jian Zhang, Shengxi Zhang, Xiaofang Qiu et al 2020 Chin. Phys. Lett. 37 038101 |
|
|
Abstract Strained HgTe thin films are typical three-dimensional topological insulator materials. Most works have focused on HgTe (100) films due to the topological properties resulting from uniaxial strain. In this study, strained HgTe (111) thin films are grown on GaAs (100) substrates with CdTe (111) buffer layers using molecular beam epitaxy (MBE). The optimal growth conditions for HgTe films are determined to be a growth temperature of 160$^{\circ}\!$C and an Hg/Te flux ratio of 200. The strains of HgTe films with different thicknesses are investigated by high-resolution x-ray diffraction, including reciprocal space mapping measurements. The critical thickness of HgTe (111) film on CdTe/GaAs is estimated to be approximately 284 nm by Matthews' equations, consistent with the experimental results. Reflection high-energy electron diffraction and high-resolution transmission electron microscopy investigations indicate that high-quality HgTe films are obtained. This exploration of the MBE growth of HgTe (111) films provides valuable information for further studies of HgTe-based topological insulators.
|
|
Received: 06 December 2019
Published: 22 February 2020
|
|
PACS: |
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
61.05.-a
|
(Techniques for structure determination)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
68.37.Og
|
(High-resolution transmission electron microscopy (HRTEM))
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11634009, 61874069, 1177041280 and 11574336), and Shanghai Science and Technology Foundation (Grant No.18JC1420401). |
|
|
[1] | Lei W, Antoszewski J and Faraone L 2015 Appl. Phys. Rev. 2 041303 | [2] | Liu M, Wang C and Zhou L Q 2019 Chin. Phys. B 28 037804 | [3] | Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 | [4] | König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 | [5] | Brüne C, Liu C X, Novik E G, Hankiewicz E M, Buhmann H, Chen Y L, Qi X L, Shen Z X, Zhang S C and Molenkamp L W 2011 Phys. Rev. Lett. 106 126803 | [6] | Brüne C, Roth A, Novik E G, König M, Buhmann H, Hankiewicz E M, Hanke W, Sinova J and Molenkamp L W 2010 Nat. Phys. 6 448 | [7] | Nowack K C, Spanton E M, Baenninger M, König M, Kirtley J R, Kalisky B, Ames C, Leubner P, Brüne C, Buhmann H, Molenkamp L W, Goldhaber-Gordon D and Moler K A 2013 Nat. Mater. 12 787 | [8] | Savchenko M L, Kozlov D A, Vasilev N N, Kvon Z D, Mikhailov N N, Dvoretsky S A and Kolesnikov A V 2019 Phys. Rev. B 99 195423 | [9] | Ballingall J M, Leopold D J, Wroge M L, Peterman D J, Morris B J and Broerman J G 1986 Appl. Phys. Lett. 49 871 | [10] | Oehling S, Ehinger M, Spahn W, Waag A, Becker C R and Landwehr G 1996 J. Appl. Phys. 79 748 | [11] | Dvoretsky S, Mikhailov N, Sidorov Yu, Shvets V, Danilov S, Wittman B and Ganichev S 2010 J. Electron. Mater. 39 918 | [12] | Ballet P, Thomas C, Baudry X, Bouvier C, Crauste O, Meunier T, Badano G, Veillerot M, Barnes J P, Jouneau P H and Levy L P 2014 J. Electron. Mater. 43 2955 | [13] | Selviga E, Tonheim C R, Kongshaug K O, Skauli T, Lorentzen T and Haakenaasen R 2007 J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 25 1776 | [14] | Thomasa C, Baudrya X, Barnesa J P, Veillerota M, Jouneaub P H, Pougetb S, Craustec O, Meunierc T, Lévyc L P and Ballet P 2015 J. Cryst. Growth 425 195 | [15] | Leubner P, Lunczer L, Brüne C, Buhmann H and Molenkamp L W 2016 Phys. Rev. Lett. 117 086403 | [16] | Feldman R D, Nakahara S, Opila R L, Austin R F and Boone T 1989 J. Cryst. Growth 98 581 | [17] | Schaake H F and Koestner R J 1988 J. Cryst. Growth 86 452 | [18] | Yang X Y, Wang G Y, Zhao C X, Zhu Z, Dong L, Li A M, Lv Y Y, Yao S H, Chen Y B, Guan D D, Li Y Y, Zheng H, Qian D, Liu C H, Chen Y L and Jia J F 2018 Chin. Phys. Lett. 35 026802 | [19] | Beugeling W, Kalesaki E, Delerue C, Niquet Y M, Vanmaekelbergh D and Smith C M 2015 Nat. Commun. 6 6316 | [20] | Liang F, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803 | [21] | Zaheer S, Young S M, Cellucci D, Teo J C Y, Kane C L, Mele E J and Rappe A M 2013 Phys. Rev. B 87 045202 | [22] | Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405 | [23] | Dresselhaus G 1955 Phys. Rev. 100 580 | [24] | Selvig E, Tonheim C R, Lorentzen T, Kongshaug K O, Skauli T and Haakenaasen R 2008 J. Electron. Mater. 37 1444 | [25] | Matthews J W and Blakeslee A E 1974 J. Cryst. Growth 27 118 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|