Chin. Phys. Lett.  2020, Vol. 37 Issue (3): 037201    DOI: 10.1088/0256-307X/37/3/037201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Improvement of Thermoelectric Performance in BiCuSeO Oxide by Ho Doping and Band Modulation
Bo Feng1,2,3, Guang-Qiang Li1,2,3, Xiao-Ming Hu1,2,3, Pei-Hai Liu1,2,3, Ru-Song Li1,2,3, Yang-Lin Zhang1,2,3, Ya-Wei Li1,2,3, Zhu He1,2,3, Xi-An Fan1,2,3**
1The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081
2National-Provincial Joint Engineering Research Center of High Temperature Materials and Lining Technology, Wuhan University of Science and Technology, Wuhan 430081
3Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081
Cite this article:   
Bo Feng, Guang-Qiang Li, Xiao-Ming Hu et al  2020 Chin. Phys. Lett. 37 037201
Download: PDF(2650KB)   PDF(mobile)(2645KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We try to use Ho doping combined with band modulation to adjust the thermoelectric properties for BiCuSeO. The results show that Ho doping can increase the carrier concentration and increase the electrical conductivity in the whole temperature range. Although Seebeck coefficient decreases due to the increase of carrier concentration, it still keeps relatively high values, especially in the middle and high temperature range. On this basis, the band-modulation sample can maintain relatively higher carrier concentration while maintaining relatively higher mobility, and further improve the electrical transporting performance. In addition, due to the introduction of a large number of interfaces in the band-modulation samples, the phonon scattering is enhanced effectively and the lattice thermal conductivity is reduced. Finally, the maximal power factor (PF) of 5.18 $\mu$W$\cdot$cm$^{-1}$K$^{-2}$ and the dimensionless thermoelectric figure of merits (ZT) of 0.81 are obtained from the 10% Ho modulation doped sample at 873 K.
Received: 01 October 2019      Published: 22 February 2020
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  72.20.Dp (General theory, scattering mechanisms)  
Fund: Supported by the National Natural Science Foundation of China under Grant No. 51674181.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/3/037201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I3/037201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bo Feng
Guang-Qiang Li
Xiao-Ming Hu
Pei-Hai Liu
Ru-Song Li
Yang-Lin Zhang
Ya-Wei Li
Zhu He
Xi-An Fan
[1]Achour A, Kan C, Reece M J and Huang Z 2018 Adv. Energy Mater. 8 1701430
[2]Tang X, Xie W, Li H, Zhao W Y and Zhang Q J 2007 Appl. Phys. Lett. 90 012102
[3]Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder J F 2008 Science 321 554
[4]Yu T, Decong Land Zhong Chen 2018 Chin. Phys. B 27 118105
[5]Flahaut D, Mihara T, Funahashi R, Nabeshima N, Lee K H, Ohta K and Koumoto K 2006 J. Appl. Phys. 100 084911
[6]Ohtaki M, Tsubota T, Eguchi K, Koichi E and Hiromichi A 1996 J. Appl. Phys. 79 1816
[7]Da Q L, Yu W Z and Hui J K 2018 Chin. Phys. B 27 047205
[8]Li G J, Zhao S J, Mei A and Lan J 2009 Adv. Mater. Res. 79 2143
[9]Li J, Sui J, Pei Y, Meng X F, David B, Nita D, Cai W and Zhao L D 2014 J. Mater. Chem. A 2 4903
[10]Zhao L D, He J, Berardan D, Lin Y H, Li J F, Nan C W and Nita D 2014 Energy & Environ. Sci. 7 2900
[11]Hsiao C L and Qi X 2016 Acta Mater. 102 88
[12]Li J, Sui J, Pei Y, David B, Nita D and Zhao L D 2012 Energy & Environ. Sci. 5 8543
[13]Feng B, Li G Q, Hou Y H, Cheng C Z, Jiang C P, Hu J, Xiang Q S and Fan X A 2017 J. Alloys Compd. 712 386
[14]Liu Y, Lan J and Xu W 2013 Chem. Commun. 49 8075
[15]Liu Y, Ding J, Xu B, Lan J, Zheng Y H, Zhan B, Zhang B P, Lin Y H and Nan C W 2015 Appl. Phys. Lett. 106 233903
[16]Li Z, Xiao C, Fan S, Deng Y, Zhang W, Ye B and Xie Y 2015 J. Am. Chem. Soc. 137 6587
[17]Liu Y, Zhao L D and Liu Y 2011 J. Am. Chem. Soc. 133 20112
[18]Sui J, Li J, He J, Pei Y L, David B, Wu H J, Nita D, Cai W and Zhao L D 2013 Energy & Environ. Sci. 6 2916
[19]Pei Y L, Wu H and Wu D 2014 J. Am. Chem. Soc. 136 13902
[20]Bo F, Guangqiang L, Zhao P, Jiang C P, Hu J, Xiang Q S and Fan X A 2018 J. Solid State Chem. 266 297
[21]Dingle R, Störmer H L and Gossard A C 1978 Appl. Phys. Lett. 33 665
[22]Hmood A, Kadhim A and Hassan H A 2012 J. Alloys Compd. 520 1
[23]Yang Y, Liu X and Liang X 2017 Dalton Trans. 46 2510
[24]Lin H, Chen H, Ma N, Zheng Y J, Shen J N, Yu J S, Xu X T and Wu L M 2017 Inorg. Chem. Front. 4 1273
Related articles from Frontiers Journals
[1] Min Zhang, Chaoliang Hu, Qi Zhang, Feng Liu, Shen Han, Chenguang Fu, and Tiejun Zhu. Realizing n-Type GeTe through Suppressing the Formation of Cation Vacancies and Bi-Doping[J]. Chin. Phys. Lett., 2021, 38(12): 037201
[2] Zhongmou Yue, Kunpeng Zhao, Hongyi Chen, Pengfei Qiu, Lidong Chen, and Xun Shi. Enhanced Thermoelectric Properties of Cu$_{x}$Se ($1.75 \le x \le 2.10$) during Phase Transitions[J]. Chin. Phys. Lett., 2021, 38(11): 037201
[3] Wang Li , Tian Xu , Zheng Ma , Abubakar-Yakubu Haruna, Qing-Hui Jiang , Yu-Bo Luo, and Jun-You Yang. Simultaneous Optimization of Power Factor and Thermal Conductivity towards High-Performance InSb-Based Thermoelectric Materials[J]. Chin. Phys. Lett., 2021, 38(9): 037201
[4] Wenke He , Bingchao Qin , and Li-Dong Zhao. Predicting the Potential Performance in P-Type SnS Crystals via Utilizing the Weighted Mobility and Quality Factor[J]. Chin. Phys. Lett., 2020, 37(8): 037201
[5] Kai Zhou, Ting Zhang, Bin Liu, Yi-Jun Yao. Electronic Structures and Thermoelectric Properties of ZnSb Doped with Cd and In from First Principles Calculations[J]. Chin. Phys. Lett., 2020, 37(1): 037201
[6] Dong-Dong Yang, Hao Tong, Ling-Jun Zhou, Xiang-Shui Miao. Effects of Thickness and Temperature on Thermoelectric Properties of Bi$_{2}$Te$_{3}$-Based Thin Films[J]. Chin. Phys. Lett., 2017, 34(12): 037201
[7] Peng-Xian Lu, Rui-Xia Zhao. Electronic Structure and Thermoelectric Power Factor of Na$_{x}$CoO$_{2}$ from First-Principles Calculation[J]. Chin. Phys. Lett., 2017, 34(3): 037201
[8] WU Zi-Hua, XIE Hua-Qing, WANG Yuan-Yuan, XING Jiao-Jiao, MAO Jian-Hui. Nanojunctions Contributing to High Performance Thermoelectric ZnO-Based Inorganic–Organic Hybrids[J]. Chin. Phys. Lett., 2015, 32(11): 037201
[9] BAHSHELI Guliyev, AKBAR Barati Chiyaneh, NOVRUZ Bashirov, GENBER Kerimli. Effects of Nonparabolicity on Electron Thermopower of Size-Quantized Semiconductor Films[J]. Chin. Phys. Lett., 2015, 32(07): 037201
[10] ZHANG Xin, LIU Jian, LI Yi, SU Wen-Bin, LI Ji-Chao, ZHU Yuan-Hu, LI Mao-Kui, WANG Chun-Ming, WANG Chun-Lei. Enhancement of Thermoelectric Performance of Sr0.9Ba0.1Ti0.8Nb0.2O3 Ceramics by A-Site Cation Nonstoichiometry[J]. Chin. Phys. Lett., 2015, 32(03): 037201
[11] XUN Meng, XU Chen, XIE Yi-Yang, DENG Jun, XU Kun, CHEN Hong-Da. Thermal Analysis of Implant-Defined Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2015, 32(01): 037201
[12] XU Kun-Qi, ZENG Hua-Rong, YU Hui-Zhu, ZHAO Kun-Yu, LI Guo-Rong, SONG Jun-Qiang, SHI Xun, CHEN Li-Dong. An Alternating-Current Voltage Modulated Thermal Probe Technique for Local Seebeck Coefficient Characterization[J]. Chin. Phys. Lett., 2014, 31(12): 037201
[13] YAN Guo-Ying, ZHANG Hui-Ling, BAI Zi-Long, WANG Shu-Fang, WANG Jiang-Long, YU Wei, FU Guang-Sheng. The Enhancement of Laser-Induced Transverse Voltage in Tilted Bi2Sr2Co2Oy Thin Films with a Graphite Light Absorption Layer[J]. Chin. Phys. Lett., 2013, 30(4): 037201
[14] KONG Fang-Fang, LIU Cong-Cong, XU Jing-Kun**, JIANG Feng-Xing, LU Bao-Yang, YUE Rui-Rui, LIU Guo-Dong, WANG Jian-Min . Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea[J]. Chin. Phys. Lett., 2011, 28(3): 037201
[15] LU Bao-Yang, LIU Cong-Cong, LU Shan, XU Jing-Kun, JIANG Feng-Xing, LI Yu-Zhen, ZHANG Zhuo. Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene) Nanofilms[J]. Chin. Phys. Lett., 2010, 27(5): 037201
Viewed
Full text


Abstract