Chin. Phys. Lett.  2020, Vol. 37 Issue (2): 027302    DOI: 10.1088/0256-307X/37/2/027302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer
Zhong-Qiu Xing1,2,3, Yong-Jie Zhou4, Yu-Huai Liu1,2,3**, Fang Wang1,2,3**
1National Joint Research Center for Electron Materials and Systems, Zhengzhou University, Zhengzhou 450001
2International Joint Laboratory of Electron Materials and Systems, Zhengzhou University, Zhengzhou 450001
3School of Information Engineering, Zhengzhou University, Zhengzhou 450001
4School of Physics and Electron Engineering, Xinyang Normal University, Xinyang 464000
Cite this article:   
Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu et al  2020 Chin. Phys. Lett. 37 027302
Download: PDF(656KB)   PDF(mobile)(648KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To improve the optical and electrical properties of AlGaN-based deep ultraviolet lasers, an inverse-trapezoidal electron blocking layer is designed. Lasers with three different structural electron blocking layers of rectangular, trapezoidal and inverse-trapezoidal structures are established. The energy band, electron concentration, electron current density, $P$–$I$ and $V$–$I$ characteristics, and the photoelectric conversion efficiency of different structural devices are investigated by simulation. The results show that the optical and electrical properties of the inverse-trapezoidal electron blocking layer laser are better than those of rectangular and trapezoidal structures, owing to the effectively suppressed electron leakage.
Received: 17 November 2019      Published: 18 January 2020
PACS:  73.21.Fg (Quantum wells)  
  73.61.Ey (III-V semiconductors)  
  78.60.Fi (Electroluminescence)  
Fund: Supported by the National Natural Science Foundation of China under Grant No. 61176008, the Special Project for Inter-government Collaboration of State Key Research and Development Program under Grant No. 2016YFE0118400, the Key Project of Science and Technology of Henan Province under Grant No. 172102410062, and the National Natural Science Foundation of China–Henan Provincial Joint Fund for Key Project under Grant No. U1604263.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/2/027302       OR      https://cpl.iphy.ac.cn/Y2020/V37/I2/027302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhong-Qiu Xing
Yong-Jie Zhou
Yu-Huai Liu
Fang Wang
[1]Satter M M, Kim H J and Lochner Z 2012 IEEE J. Quantum Electron. 48 703
[2]Hirayama H, Yatabe T and Noguchi N 2007 Appl. Phys. Lett. 91 71901
[3]Sun W, Shatalov M and Deng J 2010 Appl. Phys. Lett. 96 061102
[4]Yang W, Li D and He J 2013 Phys. Status Solidi 10 346
[5]Xie J, Ni X and Fan 2008 Appl. Phys. Lett. 93 21107
[6]Hansen M, Piprek J and Pattison P M 2002 Appl. Phys. Lett. 81 4275
[7]Tu R C, Tun C J and Pan S M 2003 IEEE Photon. Technol. Lett. 15 1342
[8]Han S H, Lee D Y and Lee S J 2009 Appl. Phys. Lett. 94 231123
[9]Dong S G and Chen G J 2013 Appl. Mech. Mater. 440 25
[10]Chen J R, Ling S C and Huang H M 2009 Appl. Phys. B 95 145
[11]Chen P, Zhao D G and Jiang D S 2015 Phys. Status Solidi 212 2936
[12]Yang W, Li D and Liu N et al 2012 Appl. Phys. Lett. 100 031105
[13]Bojarska A, Goss J and Stanczyk S 2018 Superlattices Microstruct. 116 114
[14]Zhang Y, Kao T T and Liu J P et al 2011 J. Appl. Phys. 109 083115
[15]Mehta K, Liu Y S and Wang J 2018 IEEE J. Quantum Electron. 1 1
[16]Wang Y F, Niass I, Wang F et al 2019 Chin. Phys. Lett. 36 057301
[17]Tian W, Feng Z H and Liu B 2013 Opt. Quantum Electron. 45 381
[18]Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
[19]Dong K X, Chen D J, Liu et al 2012 Appl. Phys. Lett. 100 073507
[20]Zhang G, Wang C and Cao B 2010 Opt. Express 18 7019
[21]Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675
[22]Ren C X 2016 J. Mater. Sci. & Technol. 32 418
[23]Wang T H and Xu J L 2015 Mater. Sci. Semicond. Process. 29 95
[24]Li Y Y, Li A Z, Wei L et al 2009 Chin. Phys. Lett. 26 087804
[25]Wada O 1994 South Afr. J. Occupational Ther. 43 1754
[26]Zhang L Q, Jiang D S and Zhu J J 2009 J. Appl. Phys. 105 023104
[27]Zhang M, Li Y and Chen S 2014 Superlattices Microstruct. 75 63
Related articles from Frontiers Journals
[1] O. Ozturk, E. Ozturk, S. Elagoz. Nonlinear Optical Rectification, Second and Third Harmonic Generations in Square-Step and Graded-Step Quantum Wells under Intense Laser Field[J]. Chin. Phys. Lett., 2019, 36(6): 027302
[2] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 027302
[3] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 027302
[4] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 027302
[5] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 027302
[6] Lai Wang, Xiao Meng, Jung-Hoon Song, Tae-Soo Kim, Seung-Young Lim, Zhi-Biao Hao, Yi Luo, Chang-Zheng Sun, Yan-Jun Han, Bing Xiong, Jian Wang, Hong-Tao Li. A Method to Obtain Auger Recombination Coefficient in an InGaN-Based Blue Light-Emitting Diode[J]. Chin. Phys. Lett., 2017, 34(1): 027302
[7] Shaffa Almansour, Hassen Dakhlaoui, Emane Algrafy. Effect of Si $\delta$-Doping on the Linear and Nonlinear Optical Absorptions and Refractive Index Changes in InAlN/GaN Single Quantum Wells[J]. Chin. Phys. Lett., 2016, 33(02): 027302
[8] Xiao-Guang Wu. Electron-Elastic-Wave Interaction in a Two-Dimensional Topological Insulator[J]. Chin. Phys. Lett., 2016, 33(02): 027302
[9] BAHSHELI Guliyev, AKBAR Barati Chiyaneh, NOVRUZ Bashirov, GENBER Kerimli. Effects of Nonparabolicity on Electron Thermopower of Size-Quantized Semiconductor Films[J]. Chin. Phys. Lett., 2015, 32(07): 027302
[10] CHEN Xi-Ren, SONG Yu-Xin, ZHU Liang-Qing, QI Zhen, ZHU Liang, ZHA Fang-Xing, GUO Shao-Ling, WANG Shu-Min, SHAO Jun. Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance[J]. Chin. Phys. Lett., 2015, 32(06): 027302
[11] GAO Han-Chao, YIN Zhi-Jun. Theoretical and Experimental Optimization of InGaAs Channels in GaAs PHEMT Structure[J]. Chin. Phys. Lett., 2015, 32(06): 027302
[12] Emine Ozturk, Ismail Sokmen. Nonlinear Intersubband Transitions in Square and Graded Quantum Wells Modulated by Intense Laser Field[J]. Chin. Phys. Lett., 2014, 31(12): 027302
[13] CHEN Jian, XU Huai-Zhe. Directional Plasmon Filtering in a Two-Dimensional Electron Gas Embedded in High-Index Crystallographic Planes[J]. Chin. Phys. Lett., 2014, 31(03): 027302
[14] WANG Gang, YE Hui-Qi, SHI Zhen-Wu, WANG Wen-Xin, MARIE Xavier, BALOCCHI Andrea, AMAND Thierry, LIU Bao-Li. Spin Dynamics in (111) GaAs/AlGaAs Undoped Asymmetric Quantum Wells[J]. Chin. Phys. Lett., 2012, 29(9): 027302
[15] WEN Xiao-Xia, YANG Xiao-Dong, HE Miao, LI Yang, WANG Geng, LU Ping-Yuan, QIAN Wei-Ning, LI Yun, ZHANG Wei-Wei, WU Wen-Bo, CHEN Fang-Sheng, DING Li-Zhen. Improved Efficiency Droop in a GaN-Based Light-Emitting Diode with an AlInN Electron-Blocking Layer[J]. Chin. Phys. Lett., 2012, 29(9): 027302
Viewed
Full text


Abstract