Chin. Phys. Lett.  2020, Vol. 37 Issue (2): 027301    DOI: 10.1088/0256-307X/37/2/027301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs
SiQin-GaoWa Bao1,2,3, Jie-Jie Zhu1,2**, Xiao-Hua Ma1,2, Bin Hou1,2, Ling Yang1,2, Li-Xiang Chen1,2, Qing Zhu1,2, Yue Hao2
1School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071
2Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071
3School of Science, Inner Mongolia University of Technology, Hohhot 010051
Cite this article:   
SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma et al  2020 Chin. Phys. Lett. 37 027301
Download: PDF(767KB)   PDF(mobile)(760KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the effects of remote nitride-based plasma treatment on the channel carrier and device characteristics of AlGaN/GaN high electron mobility transistors (HEMTs). A 200 W NH$_{3}$/N$_{2}$ remote plasma causes little degeneration of carrier mobility and an increase in electron density due to surface alteration, which results in a decrease in sheet resistance and an increase in output current by 20–30%. Improved current slump, suppressed gate leakage current, and improved Schottky contact properties are also achieved by using low-damage nitride-based plasma treatment. It is found that NH$_{3}$/N$_{2}$ remote plasma treatment is a promising technique for GaN-based HEMTs to modulate the surface conditions and channel properties.
Received: 12 November 2019      Published: 18 January 2020
PACS:  73.61.Ey (III-V semiconductors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 61634005, 61704124, and 11690042.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/2/027301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I2/027301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SiQin-GaoWa Bao
Jie-Jie Zhu
Xiao-Hua Ma
Bin Hou
Ling Yang
Li-Xiang Chen
Qing Zhu
Yue Hao
[1]Ibbetson J P, Fini P T, Ness K D et al 2000 Appl. Phys. Lett. 77 250
[2]Smorchkova I P, Elsass C R, Ibbetson J P et al 1999 J. Appl. Phys. 86 4520
[3]Nakaji M, Egawa T, Ishikawa H et al 2002 Jpn. J. Appl. Phys. 41 L493
[4]Edwards A P, Mittereder J A, Binar S C et al 2005 IEEE Electron Device Lett. 26 225
[5]Guhel Y, Boudart B, Vellas N et al 2005 Solid-State Electron. 49 1589
[6]Meyer David J, Flemish J R and Redwing J M 2006 Appl. Phys. Lett. 89 223523
[7]Meyer David J, Flemish J R and Redwing J M 2008 Appl. Phys. Lett. 92 193505
[8]Kim J H, Choi H G, Ha M W et al 2010 Jpn. J. Appl. Phys. 49 04DF05
[9]Romero M F, Jiménez A, Miguel Sánchez J et al 2008 IEEE Electron Device Lett. 29 209
[10]Romero M F, Jiménez A, González-Posada F et al 2012 IEEE Trans. Electron Devices 59 374
[11]Lee N H, Choi W, Lee M et al 2014 CS MANTECH Conference (Denver, Colorado, USA, 1–3 January 2014) p 245
[12]Her J C, Cho H J, Yoo C S et al 2010 Jpn. J. Appl. Phys. 49 041002
[13]Liu X K, Low E K F, Pan J et al 2011 Appl. Phys. Lett. 99 093504
[14]Huang S, Jiang Q, Yang S et al 2012 IEEE Electron Device Lett. 33 516
[15]Yang S, Tang Z, Wong K Y et al 2013 IEEE Electron Device Lett. 34 1497
[16]Zhu J J, Ma X H, Xie Y et al 2015 IEEE Trans. Electron Devices 62 512
[17]Wang L, Mohammed F M and Adesida I 2008 J. Appl. Phys. 103 093516
[18]Hierro A, Ringel S A, Hansen M et al 2000 Appl. Phys. Lett. 77 1499
[19]Pearton S J, Zolper J C, Shul R J et al 1999 J. Appl. Phys. 86 1
[20]Goyal N and Fjeldly T A 2014 Appl. Phys. Lett. 105 033511
[21]Goswami A, Trew R J and Bilbro G L 2014 IEEE Trans. Electron Devices 61 1014
Related articles from Frontiers Journals
[1] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 027301
[2] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 027301
[3] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 027301
[4] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 027301
[5] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 027301
[6] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 027301
[7] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 027301
[8] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 027301
[9] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 027301
[10] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 027301
[11] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 027301
[12] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 027301
[13] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 027301
[14] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 027301
[15] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 027301
Viewed
Full text


Abstract