CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs |
SiQin-GaoWa Bao1,2,3, Jie-Jie Zhu1,2**, Xiao-Hua Ma1,2, Bin Hou1,2, Ling Yang1,2, Li-Xiang Chen1,2, Qing Zhu1,2, Yue Hao2 |
1School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071 2Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071 3School of Science, Inner Mongolia University of Technology, Hohhot 010051
|
|
Cite this article: |
SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma et al 2020 Chin. Phys. Lett. 37 027301 |
|
|
Abstract We investigate the effects of remote nitride-based plasma treatment on the channel carrier and device characteristics of AlGaN/GaN high electron mobility transistors (HEMTs). A 200 W NH$_{3}$/N$_{2}$ remote plasma causes little degeneration of carrier mobility and an increase in electron density due to surface alteration, which results in a decrease in sheet resistance and an increase in output current by 20–30%. Improved current slump, suppressed gate leakage current, and improved Schottky contact properties are also achieved by using low-damage nitride-based plasma treatment. It is found that NH$_{3}$/N$_{2}$ remote plasma treatment is a promising technique for GaN-based HEMTs to modulate the surface conditions and channel properties.
|
|
Received: 12 November 2019
Published: 18 January 2020
|
|
PACS: |
73.61.Ey
|
(III-V semiconductors)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.50.Gr
|
(Charge carriers: generation, recombination, lifetime, trapping, mean free paths)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 61634005, 61704124, and 11690042. |
|
|
[1] | Ibbetson J P, Fini P T, Ness K D et al 2000 Appl. Phys. Lett. 77 250 | [2] | Smorchkova I P, Elsass C R, Ibbetson J P et al 1999 J. Appl. Phys. 86 4520 | [3] | Nakaji M, Egawa T, Ishikawa H et al 2002 Jpn. J. Appl. Phys. 41 L493 | [4] | Edwards A P, Mittereder J A, Binar S C et al 2005 IEEE Electron Device Lett. 26 225 | [5] | Guhel Y, Boudart B, Vellas N et al 2005 Solid-State Electron. 49 1589 | [6] | Meyer David J, Flemish J R and Redwing J M 2006 Appl. Phys. Lett. 89 223523 | [7] | Meyer David J, Flemish J R and Redwing J M 2008 Appl. Phys. Lett. 92 193505 | [8] | Kim J H, Choi H G, Ha M W et al 2010 Jpn. J. Appl. Phys. 49 04DF05 | [9] | Romero M F, Jiménez A, Miguel Sánchez J et al 2008 IEEE Electron Device Lett. 29 209 | [10] | Romero M F, Jiménez A, González-Posada F et al 2012 IEEE Trans. Electron Devices 59 374 | [11] | Lee N H, Choi W, Lee M et al 2014 CS MANTECH Conference (Denver, Colorado, USA, 1–3 January 2014) p 245 | [12] | Her J C, Cho H J, Yoo C S et al 2010 Jpn. J. Appl. Phys. 49 041002 | [13] | Liu X K, Low E K F, Pan J et al 2011 Appl. Phys. Lett. 99 093504 | [14] | Huang S, Jiang Q, Yang S et al 2012 IEEE Electron Device Lett. 33 516 | [15] | Yang S, Tang Z, Wong K Y et al 2013 IEEE Electron Device Lett. 34 1497 | [16] | Zhu J J, Ma X H, Xie Y et al 2015 IEEE Trans. Electron Devices 62 512 | [17] | Wang L, Mohammed F M and Adesida I 2008 J. Appl. Phys. 103 093516 | [18] | Hierro A, Ringel S A, Hansen M et al 2000 Appl. Phys. Lett. 77 1499 | [19] | Pearton S J, Zolper J C, Shul R J et al 1999 J. Appl. Phys. 86 1 | [20] | Goyal N and Fjeldly T A 2014 Appl. Phys. Lett. 105 033511 | [21] | Goswami A, Trew R J and Bilbro G L 2014 IEEE Trans. Electron Devices 61 1014 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|