Chin. Phys. Lett.  2020, Vol. 37 Issue (2): 027101    DOI: 10.1088/0256-307X/37/2/027101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Adsorption of Perylene on Si(111)($7 \times 7$)
Dandan Guan1,2**, Xinwei Wang3, Hongying Mao4, Shining Bao5, Jin-Feng Jia1,2
1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
2Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240
3School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
4Department of Physics, Hangzhou Normal University, Hangzhou 310036
5Department of Physics, Zhejiang University, Hangzhou 310027
Cite this article:   
Dandan Guan, Xinwei Wang, Hongying Mao et al  2020 Chin. Phys. Lett. 37 027101
Download: PDF(719KB)   PDF(mobile)(711KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the adsorption of organic molecular semiconductor perylene on ($7 \times 7$) reconstructed Si(111) surface by ultraviolet photoemission spectroscopy. It is observed that seven features that derive from the organic material are located at 0.71, 2.24, 4.0, 5.9, 7.46, 8.65 and 9.95 eV in binding energy. The theoretical calculation results reveal the most stable adsorption geometry of organic molecule perylene on Si(111) ($7 \times 7$) substrates is at the beginning of deposition.
Received: 15 November 2019      Published: 18 January 2020
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. U1632102, 11521404, 11634009, 11674222, 11674226, 11790313, 11574202, 11874256, 11861161003 and 11874258, the National Key Research and Development Program of China (Grant Nos. 2016YFA0300403 and 2016YFA0301003); in part by the Key Research Program of the Chinese Academy of Science (Grant No. XDPB082), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/2/027101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I2/027101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Dandan Guan
Xinwei Wang
Hongying Mao
Shining Bao
Jin-Feng Jia
[1]Forrest S R 2004 Nature 428 911
[2]Hepp A, Heil H 2003 Phys. Rev. Lett. 91 157406
[3]Choi J M, Lee J 2006 Appl. Phys. Lett. 88 043508
[4]Muccini M 2006 Nat. Mater. 5 605
[5]Caterin S R 2014 Org. Photodetectors 10 13140
[6]Barbarella G, Zangoli M and Di Maria F 2017 Adv. Heterocyclic Chem. 123 105
[7]Choi M, Park Y J 2018 Sci. Adv. 4 eaas8721
[8]Kong S H, Lee J I 2018 ACS Photon. 5 267
[9]Troisi A and Orlandi G 2006 Phys. Rev. Lett. 96 086601
[10]Hatch R C, Huber D L and Höchst H 2010 Phys. Rev. Lett. 104 047601
[11]Hatch R C, Huber D L and Höchst H 2009 Phys. Rev. B 80 081411(R)
[12]Qian H Q, Mao H Y 2010 Appl. Surf. Sci. 256 2686
[13]Kalashnyk N, Amiaud L 2018 J. Chem. Phys. 148 214702
[14]Bobrov K, Kalashnyk N and Guillemot L 2015 J. Chem. Phys. 142 101929
[15]Wang H T, Yang X D 2019 J. Nanomater. 9 1136
[16]Choudhary D, Clancy P and Bowler D R 2005 Surf. Sci. 578 20
[17]Suzuki T, Sorescu D C and Yates J T 2006 Surf. Sci. 600 5092
[18]Ample F and Joachim C 2008 Surf. Sci. 602 1563
[19]Jaeckel B, Lim T 2007 Langmuir 23 4856
[20]Yong K S, Zhang Y P 2007 J. Phys. Chem. A 111 12266
[21]Guan D D, Mao H Y 2009 J. Chem. Phys. 130 174712
[22]Mao H Y, Guan D D 2009 J. Chem. Phys. 131 044703
[23]RaDa T, Chen Q and Richardson N V 2003 J. Phys.: Condens. Matter 15 s2749
[24]Chen H Z, Ling M M 2007 Chem. Mater. 19 816
[25]Miki K, Sakamoto K, Sakamoto T 1998 Surf. Sci. 406 312
[26]Huang H, Zhang H J, Bernhard B 2006 J. Chem. Phys. 124 054716
[27]Delley B 2000 J. Chem. Phys. 113 7756
[28]Takayanagi K, Tanishiro Y 1985 Surf. Sci. 164 367
[29]Dou W D, Guan D D 2009 Chem. Phys. Lett. 470 126
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 027101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 027101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 027101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 027101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 027101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 027101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 027101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 027101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 027101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 027101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 027101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 027101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 027101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 027101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 027101
Viewed
Full text


Abstract