CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Adsorption of Perylene on Si(111)($7 \times 7$) |
Dandan Guan1,2**, Xinwei Wang3, Hongying Mao4, Shining Bao5, Jin-Feng Jia1,2 |
1Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 2Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240 3School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 4Department of Physics, Hangzhou Normal University, Hangzhou 310036 5Department of Physics, Zhejiang University, Hangzhou 310027
|
|
Cite this article: |
Dandan Guan, Xinwei Wang, Hongying Mao et al 2020 Chin. Phys. Lett. 37 027101 |
|
|
Abstract We investigate the adsorption of organic molecular semiconductor perylene on ($7 \times 7$) reconstructed Si(111) surface by ultraviolet photoemission spectroscopy. It is observed that seven features that derive from the organic material are located at 0.71, 2.24, 4.0, 5.9, 7.46, 8.65 and 9.95 eV in binding energy. The theoretical calculation results reveal the most stable adsorption geometry of organic molecule perylene on Si(111) ($7 \times 7$) substrates is at the beginning of deposition.
|
|
Received: 15 November 2019
Published: 18 January 2020
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
68.43.-h
|
(Chemisorption/physisorption: adsorbates on surfaces)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. U1632102, 11521404, 11634009, 11674222, 11674226, 11790313, 11574202, 11874256, 11861161003 and 11874258, the National Key Research and Development Program of China (Grant Nos. 2016YFA0300403 and 2016YFA0301003); in part by the Key Research Program of the Chinese Academy of Science (Grant No. XDPB082), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000). |
|
|
[1] | Forrest S R 2004 Nature 428 911 | [2] | Hepp A, Heil H 2003 Phys. Rev. Lett. 91 157406 | [3] | Choi J M, Lee J 2006 Appl. Phys. Lett. 88 043508 | [4] | Muccini M 2006 Nat. Mater. 5 605 | [5] | Caterin S R 2014 Org. Photodetectors 10 13140 | [6] | Barbarella G, Zangoli M and Di Maria F 2017 Adv. Heterocyclic Chem. 123 105 | [7] | Choi M, Park Y J 2018 Sci. Adv. 4 eaas8721 | [8] | Kong S H, Lee J I 2018 ACS Photon. 5 267 | [9] | Troisi A and Orlandi G 2006 Phys. Rev. Lett. 96 086601 | [10] | Hatch R C, Huber D L and Höchst H 2010 Phys. Rev. Lett. 104 047601 | [11] | Hatch R C, Huber D L and Höchst H 2009 Phys. Rev. B 80 081411(R) | [12] | Qian H Q, Mao H Y 2010 Appl. Surf. Sci. 256 2686 | [13] | Kalashnyk N, Amiaud L 2018 J. Chem. Phys. 148 214702 | [14] | Bobrov K, Kalashnyk N and Guillemot L 2015 J. Chem. Phys. 142 101929 | [15] | Wang H T, Yang X D 2019 J. Nanomater. 9 1136 | [16] | Choudhary D, Clancy P and Bowler D R 2005 Surf. Sci. 578 20 | [17] | Suzuki T, Sorescu D C and Yates J T 2006 Surf. Sci. 600 5092 | [18] | Ample F and Joachim C 2008 Surf. Sci. 602 1563 | [19] | Jaeckel B, Lim T 2007 Langmuir 23 4856 | [20] | Yong K S, Zhang Y P 2007 J. Phys. Chem. A 111 12266 | [21] | Guan D D, Mao H Y 2009 J. Chem. Phys. 130 174712 | [22] | Mao H Y, Guan D D 2009 J. Chem. Phys. 131 044703 | [23] | RaDa T, Chen Q and Richardson N V 2003 J. Phys.: Condens. Matter 15 s2749 | [24] | Chen H Z, Ling M M 2007 Chem. Mater. 19 816 | [25] | Miki K, Sakamoto K, Sakamoto T 1998 Surf. Sci. 406 312 | [26] | Huang H, Zhang H J, Bernhard B 2006 J. Chem. Phys. 124 054716 | [27] | Delley B 2000 J. Chem. Phys. 113 7756 | [28] | Takayanagi K, Tanishiro Y 1985 Surf. Sci. 164 367 | [29] | Dou W D, Guan D D 2009 Chem. Phys. Lett. 470 126 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|