FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A CMOS Compatible Si Template with (111) Facets for Direct Epitaxial Growth of III–V Materials |
Wen-Qi Wei1,2, Jian-Huan Wang2,3, Jie-Yin Zhang2,3, Qi Feng2,4, Zihao Wang2,3, Hong-Xing Xu1**, Ting Wang2,3,4**, Jian-Jun Zhang2,3,4** |
1Wuhan University School of Physics and Technology, Wuhan University, Wuhan 430072 2Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 3College of Materials Science and Opto-electronic Technology, University of Chinese Academy of Sciences, Beijing 100049 4Songshan Lake Materials Laboratory, Dongguan 523808
|
|
Cite this article: |
Wen-Qi Wei, Jian-Huan Wang, Jie-Yin Zhang et al 2020 Chin. Phys. Lett. 37 024203 |
|
|
Abstract III–V quantum dot (QD) lasers monolithically grown on CMOS-compatible Si substrates are considered as essential components for integrated silicon photonic circuits. However, epitaxial growth of III–V materials on Si substrates encounters three obstacles: mismatch defects, antiphase boundaries (APBs), and thermal cracks. We study the evolution of the structures on U-shaped trench-patterned Si (001) substrates with various trench orientations by homoepitaxy and the subsequent heteroepitaxial growth of GaAs film. The results show that the formation of (111)-faceted hollow structures on patterned Si (001) substrates with trenches oriented along [110] direction can effectively reduce the defect density and thermal stress in the GaAs/Si epilayers. The (111)-faceted silicon hollow structure can act as a promising platform for the direct growth of III–V materials for silicon based optoelectronic applications.
|
|
Received: 08 November 2019
Published: 18 January 2020
|
|
PACS: |
42.82.Fv
|
(Hybrid systems)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 61635011, 61975230, 61804177, 11434041 and 11574356, the National Key Research and Development Program of China (2016YFA0300600 and 2016YFA0301700), and the Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-JSC009). Ting Wang is supported by the Youth Innovation Promotion Association of CAS (No. 2018011). |
|
|
[1] | Soref R 2006 IEEE J. Sel. Top. Quantum Electron. 12 1678 | [2] | Asghari M and Krishnamoorthy A V 2011 Nat. Photon. 5 268 | [3] | Miller D A 2000 IEEE J. Sel. Top. Quantum Electron. 6 1312 | [4] | Liang D and Bowers J E 2010 Nat. Photon. 4 511 | [5] | Mahajan S 2000 Acta Mater. 48 137 | [6] | Kroemer H 1987 J. Cryst. Growth 81 193 | [7] | Yang V K, Groenert M, Leitz C W, Pitera A J, Currie M T and Fitzgerald E A 2003 J. Appl. Phys. 93 3859 | [8] | Wang T, Liu H, Lee A, Pozzi F and Seeds A 2011 Opt. Express 19 11381 | [9] | Lee A, Jiang Q, Tang M, Seeds A and Liu H 2012 Opt. Express 20 22181 | [10] | Chen S, Liao M, Tang M, Wu J, Martin M, Baron T, Seeds A and Liu H 2017 Opt. Express 25 4632 | [11] | Liu A Y, Peters J, Huang X, Jung D, Norman J, Lee M L, Gossard A C and Bowers J E 2017 Opt. lett. 42 338 | [12] | Lee A D, Jiang Q, Tang M, Zhang Y, Seeds A J and Liu H 2013 IEEE J. Sel. Top. Quantum Electron. 19 1901107 | [13] | Frigeri C, Bietti S, Isella G and Sanguinetti S 2013 Appl. Surf. Sci. 267 86 | [14] | Li Q, Ng K W and Lau K M 2015 Appl. Phys. Lett. 106 072105 | [15] | Wan Y, Li Q, Liu A Y, Gossard A C, Bowers J E, Hu E L and Lau K M 2016 Opt. Lett. 41 1664 | [16] | Norman J, Kennedy M J, Selvidge J, Li Q, Wan Y, Liu A Y, Callahan P G, Echlin M P, Pollock T M, Lau K M, Gossard A C and Bowers J E 2017 Opt. Express 25 3927 | [17] | Wei W Q, Wang J H, Zhang B, Zhang J Y, Wang H L, Feng Q, Xu H X, Wang T and Zhang J J 2018 Appl. Phys. Lett. 113 053107 | [18] | Li J Z, Bai J, Park J S, Adekore B, Fox K, Carroll M and Lochtefeld A 2007 Appl. Phys. Lett. 91 021114 | [19] | Li J Z, Bai J, Major C, Carroll M, Lochtefeld A and Shellenbarger Z 2008 J. Appl. Phys. 103 106102 | [20] | Wang G, Leys M R, Loo R, Richard O, Bender H, Waldron N, Brammertz G, Dekoster J, Seefeldt M, Caymax M and Heyns M M 2010 Appl. Phys. Lett. 97 121913 | [21] | Orzali T, Vert A, O'Brien B, Herman J L, Vivekanand S, Hill R J W, Karim Z and Rao S S P 2015 J. Appl. Phys. 118 105307 | [22] | Zhang B, Wei W Q, Wang J H, Zhang J Y, Cong H, Feng Q, Wang T and Zhang J J 2019 Opt. Express 27 19348 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|