Chin. Phys. Lett.  2020, Vol. 37 Issue (2): 025201    DOI: 10.1088/0256-307X/37/2/025201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Phase Effects of Long-Wavelength Rayleigh–Taylor Instability on the Thin Shell
Zhi-Yuan Li1, Li-Feng Wang1,2, Jun-Feng Wu1, Wen-Hua Ye1,2**
1Institute of Applied Physics and Computational Mathematics, Beijing 100094
2Center for Applied Physics and Technology, HEDPS, and College of Engineering, Peking University, Beijing 100871
Cite this article:   
Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu et al  2020 Chin. Phys. Lett. 37 025201
Download: PDF(1525KB)   PDF(mobile)(1524KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Taking the long-wavelength Rayleigh–Taylor instability (RTI) on the thin shell of inertial confinement fusion as the research object, a linear analytical model is presented to study the phase effects that are caused by the phase difference of single-mode perturbations on the two interfaces. Its accuracy is tested by numerical simulations. By analyzing the characteristic of this model, it is found that the phase difference does not change the basic RTI structure (only one spike and one bubble in a period). However, the symmetry of the spike and bubble is destroyed, which has non-expected influences on the convergent motion of ICF targets. Meanwhile, the phenomenon that the distance between spikes and bubbles along the vertical direction of acceleration differs by $\pi$ is demonstrated. It is also shown that when the phase difference is large, the temporal evolution of the RTI is more serious and the thin target is easier to tend to break.
Received: 27 September 2019      Published: 18 January 2020
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 11575033, 11675026 and 11975053, and the CAEP Foundation under Grant No. CX2019033.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/2/025201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I2/025201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhi-Yuan Li
Li-Feng Wang
Jun-Feng Wu
Wen-Hua Ye
[1]Rayleigh L 1883 Proc. R. Soc. London Ser. A 14 170
[2]Taylor G 1950 Proc. R. Soc. London A 201 192
[3]Wang L F et al 2017 Sci. Chin.-Phys. Mech. Astron. 60 055201
[4]Lindl J D et al 2004 Phys. Plasmas 11 339
[5]Atzeni S et al 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: OUP Oxford)
[6]Mikaelian K O 1983 Phys. Rev. A 28 1637
[7]Mikaelian K O 2005 Phys. Fluids 17 094105
[8]Wang L F et al 2014 Phys. Plasmas 21 122710
[9]Guo H Y et al 2017 Chin. Phys. Lett. 34 075201
[10]Waddell J T et al 2001 Phys. Fluids 13 1263
[11]Wilkinson J P and Jacobs J W 2007 Phys. Fluids 19 124102
[12]Ye W H et al 2002 Phys. Rev. E 65 057401
Related articles from Frontiers Journals
[1] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wun-Hua Ye, and Xian-Tu He. Interface Width Effect on the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(7): 025201
[2] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye, Xian-Tu He. Simulation of the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(5): 025201
[3] Huan Zheng, Qian Chen, Baoqing Meng, Junsheng Zeng, Baolin Tian. On the Nonlinear Growth of Multiphase Richtmyer–Meshkov Instability in Dilute Gas-Particles Flow[J]. Chin. Phys. Lett., 2020, 37(1): 025201
[4] Meng Li, Wen-Hua Ye. Successive Picket Drive for Mitigating the Ablative Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2019, 36(2): 025201
[5] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Cylindrically Convergent Geometry[J]. Chin. Phys. Lett., 2018, 35(5): 025201
[6] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Linear Growth of Rayleigh–Taylor Instability of Two Finite-Thickness Fluid Layers[J]. Chin. Phys. Lett., 2017, 34(7): 025201
[7] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Incompressible Fluids with Surface Tension[J]. Chin. Phys. Lett., 2017, 34(4): 025201
[8] XU Teng, XU Li-Xin, WANG An-Ting, GU Chun, WANG Sheng-Bo, LIU Jing, WEI An-Kun. Placement Scheme of Numerous Laser Beams in the Context of Fiber-Based Laser Fusion[J]. Chin. Phys. Lett., 2014, 31(09): 025201
[9] GUO Hong-Yu, YU Xiao-Jin, WANG Li-Feng, YE Wen-Hua, WU Jun-Feng, LI Ying-Jun. On the Second Harmonic Generation through Bell–Plesset Effects in Cylindrical Geometry[J]. Chin. Phys. Lett., 2014, 31(04): 025201
[10] WANG Li-Feng, WU Jun-Feng, YE Wen-Hua, FAN Zheng-Feng, HE Xian-Tu. Design of an Indirect-Drive Pulse Shape for ~1.6 MJ Inertial Confinement Fusion Ignition Capsules[J]. Chin. Phys. Lett., 2014, 31(04): 025201
[11] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 025201
[12] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 025201
[13] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 025201
[14] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids[J]. Chin. Phys. Lett., 2009, 26(7): 025201
Viewed
Full text


Abstract