Chin. Phys. Lett.  2020, Vol. 37 Issue (2): 024202    DOI: 10.1088/0256-307X/37/2/024202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Wavefront Shaping for Fast Focusing Light through Scattering Media Based on Parallel Wavefront Optimization and Superpixel Method
Yingchun Ding1, Xinjing Lv1, Youquan Jia1, Bin Zhang2, Zhaoyang Chen1**, Qiang Liu2**
1College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029
2State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084
Cite this article:   
Yingchun Ding, Xinjing Lv, Youquan Jia et al  2020 Chin. Phys. Lett. 37 024202
Download: PDF(787KB)   PDF(mobile)(782KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract When light travels in biological tissues, it undergoes multiple scattering and forms speckles, which seriously restricts the penetration depth of optical imaging in biological tissues. With wavefront shaping method, by modulating the wavefront of incident light to compensate for the wavefront aberration, light focusing and scanning imaging through scattering media can be achieved. However, wavefront shaping must be accomplished within the speckle decorrelation time. Considering the short speckle decorrelation time of living tissues, the speed of wavefront shaping is rather essential. We propose a new iterative optimization wavefront shaping method to improve the speed of wavefront shaping in which the existing parallel optimization wavefront shaping method is improved and is combined with the superpixel method. Compared with the traditional multi-frequency parallel optimization method, the modulation rate of our method is doubled. Moreover, we combine the high frame rate amplitude modulator, i.e., the digital micromirror device (DMD), with the superpixel method to replace the traditional phase modulator (i.e., spatial light modulator), which further increases the optimization speed. In our experiment, when the number of the optical modes is 400, light focusing is achieved with only 1000 DMD superpixel masks and the enhancement factor reaches 223. Our approach provides a new path for fast light focusing through wavefront shaping.
Received: 26 November 2019      Published: 18 January 2020
PACS:  42.25.Dd (Wave propagation in random media)  
  42.25.-p (Wave optics)  
  42.25.Fx (Diffraction and scattering)  
  42.30.Kq (Fourier optics)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2017YFB1104500), the Beijing Natural Science Foundation (Grant No. 7182091), the National Natural Science Foundation of China (Grant No. 21627813), and the Research Projects on Biomedical Transformation of China-Japan Friendship Hospital (PYBZ1801).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/2/024202       OR      https://cpl.iphy.ac.cn/Y2020/V37/I2/024202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yingchun Ding
Xinjing Lv
Youquan Jia
Bin Zhang
Zhaoyang Chen
Qiang Liu
[1]Cherry S R, Badawi R D and Qi J 2016 Essentials of in vivo Biomedical Imaging (Boca Raton: CRC Press)
[2]Jacques S L 2013 Phys. Med. & Biol. 58 R37
[3]Gareau D S, Abeytunge S and Rajadhyaksha M 2009 Opt. Lett. 34 3235
[4]Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A and Fujimoto J G 1991 Science 254 1178
[5]Sakadžić S, Demirbas U, Mempel T R, Moore A, Ruvinskaya S, Boas D A, Sennaroglu A, Kartner F X and Fujimoto J G 2008 Opt. Express 16 20848
[6]Ntziachristos V 2010 Nat. Methods 7 603
[7]Vellekoop I M and Mosk A P 2007 Opt. Lett. 32 2309
[8]Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C and Gigan S 2010 Phys. Rev. Lett. 104 100601
[9]Yu L, Xu X, Zhang Z, Feng Q, Zhang B, Ding Y and Liu Q 2019 Chin. Phys. Lett. 36 114203
[10]Feng Q, Zhang B, Liu Z, Lin C and Ding Y 2017 Appl. Opt. 56 3240
[11]Yaqoob Z, Psaltis D, Feld M S and Yang C 2008 Nat. Photon. 2 110
[12]Jang M, Ruan H, Vellekoop I M, Judkewitz B, Chung E and Yang C 2015 Biomed. Opt. Express 6 72
[13]Vellekoop I M and Mosk A P 2008 Opt. Commun. 281 3071
[14]Conkey D B, Brown A N, Caravaca-Aguirre A M and Piestun R 2012 Opt. Express 20 4840
[15]Cui M 2011 Opt. Lett. 36 870
[16]Vellekoop I M 2015 Opt. Express 23 12189
[17]Park J, Sun W and Cui M 2015 Proc. Natl. Acad. Sci. USA 112 9236
[18]Yu H, Park J, Lee K R, Yoon J, Kim K D, Lee S and Park Y K 2015 Curr. Appl. Phys. 15 632
[19]Cai M, Wang Z, Liang J, Wang Y, Gao X, Li Y, Tu C and Wang H 2017 Appl. Opt. 56 6175
[20]Wang J, Huang P, Du J, Guo Y, Luo X and Du C 2008 Chin. Phys. Lett. 25 2908
[21]Liu X, Zhang J, Wu L and Gan Y 2011 Chin. Phys. B 20 024211
[22]Sun J, Zhang B, Feng Q, He H, Ding Y and Liu Q 2019 Sci. Rep. 9 4328
[23]Gu C, Zhang D, Chang Y and Chen S 2015 Opt. Lett. 40 2870
[24]Jia Y, Feng Q, Zhang B, Wang W, Lin C and Ding Y 2018 Chin. Phys. Lett. 35 054203
Related articles from Frontiers Journals
[1] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 024202
[2] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 024202
[3] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 024202
[4] Li-Qi Yu, Xin-Yu Xu, Zhen-Feng Zhang, Qi Feng, Bin Zhang, Ying-Chun Ding, Qiang Liu. Label-Free Microscopic Imaging Based on the Random Matrix Theory in Wavefront Shaping[J]. Chin. Phys. Lett., 2019, 36(11): 024202
[5] Bi-Qi Li, Bin Zhang, Qi Feng, Xiao-Ming Cheng, Ying-Chun Ding, Qiang Liu. Shaping the Wavefront of Incident Light with a Strong Robustness Particle Swarm Optimization Algorithm[J]. Chin. Phys. Lett., 2018, 35(12): 024202
[6] You-Quan Jia, Qi Feng, Bin Zhang, Wei Wang, Cheng-You Lin, Ying-Chun Ding. Superpixel-Based Complex Field Modulation Using a Digital Micromirror Device for Focusing Light through Scattering Media[J]. Chin. Phys. Lett., 2018, 35(5): 024202
[7] Quan-Zhou Zhao, De-Long Zhang. Transmission Spectral Characteristics of Photonic Crystals Milled in Annealed Proton-Exchange LiNbO$_3$ Waveguide[J]. Chin. Phys. Lett., 2017, 34(3): 024202
[8] Yu-Jiao Li, Wei-Jun Huang, Feng-Chao Ma, Rui Wang, Ming-Zhu Lu, Ming-Xi Wan. A Modified Monte Carlo Model of Speckle Tracking of Shear Wave Induced by Acoustic Radiation Force for Acousto-Optic Elasticity Imaging[J]. Chin. Phys. Lett., 2016, 33(11): 024202
[9] Ye Li, Yi-Xin Zhang. Effects of Strong Turbulence on the Spiral Plane Mode of Whittaker–Gaussian Beam through Terrene-Atmosphere[J]. Chin. Phys. Lett., 2016, 33(05): 024202
[10] HUANG Hui-Ling, CHEN Zi-Yang, SUN Cun-Zhi, LIU Ji-Lin, PU Ji-Xiong. Light Focusing through Scattering Media by Particle Swarm Optimization[J]. Chin. Phys. Lett., 2015, 32(10): 024202
[11] GUAN Jin-Ge, ZHU Jing-Ping, TIAN Heng. Polarimetric Laser Range-Gated Underwater Imaging[J]. Chin. Phys. Lett., 2015, 32(07): 024202
[12] YANG Peng-Ju, GUO Li-Xin, JIA Chun-Gang. Doppler Spectrum Analysis of Time-Evolving Sea Surface Covered by Oil Spills[J]. Chin. Phys. Lett., 2015, 32(4): 024202
[13] XU Run-Wen, GUO Li-Xin, FAN Tian-Qi. Composite Scattering from an Arbitrary Dielectric Target above the Dielectric Rough Surface with FEM/PML[J]. Chin. Phys. Lett., 2013, 30(12): 024202
[14] CUI Shuai, ZHANG Xiao-Juan, FANG Guang-You. A Modified MRTD Forward Model of Electromagnetic Scattering with an FDTD/PML Connection Absorbing Boundary Condition[J]. Chin. Phys. Lett., 2013, 30(3): 024202
[15] LU Ming-Zhu, WU Yu-Peng, SHI Yu, GUAN Yu-Bo, GUO Xiao-Li, WAN Ming-Xi. Monte Carlo Simulation of Scattered Light with Shear Waves Generated by Acoustic Radiation Force for Acousto-Optic Imaging[J]. Chin. Phys. Lett., 2012, 29(12): 024202
Viewed
Full text


Abstract