Chin. Phys. Lett.  2020, Vol. 37 Issue (2): 024201    DOI: 10.1088/0256-307X/37/2/024201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Spider Structure of Photoelectron Momentum Distributions of Ionized Electrons from Hydrogen Atoms for Extraction of Carrier Envelope Phase of Few-Cycle Pulses
Jiu Tang1,2, Guizhong Zhang1,2**, Yufei He1,2, Meng Li1,2,3, Xin Ding1,2, Jianquan Yao1,2
1College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072
2Key Lab of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072
3Key Laboratory of Operation Programming & Safety Technology of Air Traffic Management, Civil Aviation University of China, Tianjin 300300
Cite this article:   
Jiu Tang, Guizhong Zhang, Yufei He et al  2020 Chin. Phys. Lett. 37 024201
Download: PDF(1006KB)   PDF(mobile)(1001KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The spider structure in the photoelectron momentum distributions (PMDs) of ionized electrons from the hydrogen atom is simulated by solving the time-dependent Schrödinger equation (TDSE). We find that the spider structure exhibits sensitive dependence on carrier envelope phase (CEP) of the few-cycle pulses. To elucidate the striking CEP dependence of the spider structure, we select three physical parameters $I_{\rm L}$, $I_{\rm R}$, and $I_{\rm R}/I_{\rm L}$ to quantitatively characterize the variations of the spider structure induced by altering the CEPs. $I_{\rm L}$ is the sum of the left half panel of the transverse cut curves (i.e., the sum of all the negative momenta along the laser polarization direction), $I_{\rm R}$ is the sum of the right half panel of the transverse cut curves (i.e., the sum of all the positive momenta along the laser polarization direction), and $I_{\rm R}/I_{\rm L}$ is the ratio between the two sums. These parameters are shown to have monotonic relation with the CEP value, which is exploited to extract the CEPs. We anticipate that our method will be useful for obtaining CEPs encoded in the spider structure of PMDs.
Received: 11 November 2019      Published: 18 January 2020
PACS:  42.25.Ja (Polarization)  
  42.30.Rx (Phase retrieval)  
  32.80.-t (Photoionization and excitation)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos. 11674243 and 11674242, and the Fundamental Research Funds for the Central Universities under Grant No. 3122016D014.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/2/024201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I2/024201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiu Tang
Guizhong Zhang
Yufei He
Meng Li
Xin Ding
Jianquan Yao
[1]DiMauro L F and Agostini P 1995 Adv. At. Mol. Opt. Phys. 35 79
[2]Luo S, Li M, Xie H and Zhang P 2017 Phys. Rev. A 96 023417
[3]Li M, Geng J W and Liu H 2014 Phys. Rev. Lett. 112 113002
[4]Shearer S F C and Monteith M R 2013 Phys. Rev. A 88 033415
[5]Bivona S, Burlon R and Leone C 2006 Opt. Express 14 12576
[6]Peng L Y, Gong Q H and Starace A F 2008 Phys. Rev. A 77 065403
[7]Milošević D B, Paulus G G and Bauer D 2006 J. Phys. B: At. Mol. Opt. Phys. 39 R203
[8]Zhang C, Yang W, Song X and Xu Z 2009 Opt. Express 17 21754
[9]Nerush E N and Yu I 2009 Phys. Rev. Lett. 103 035001
[10]Yavuz I, Altun Z and Topcu T 2012 Phys. Rev. A 86 043836
[11]Holzwarth R, Udem Th and Hänsch T W 2000 Phys. Rev. Lett. 85 2264
[12]Kakehata M, Takada H and Kobayashi Y 2001 Opt. Lett. 26 1436
[13]Kienberger R, Goulielmakis E and Uiberacker M 2004 Nature 427 817
[14]Goulielmakis E 2004 Science 305 1267
[15]Paulus G G, Grasbon F and Walther H 2001 Nature 414 182
[16]Paulus G G, Lindner F and Walther H 2003 Phys. Rev. Lett. 91 253004
[17]Mackenroth F, Di A and Keitel C H 2010 Phys. Rev. Lett. 105 063903
[18]He P, Ruiz C and He F 2016 Phys. Rev. Lett. 116 203601
[19]Li M, Zhang G, Zhao T and Ding X 2017 Chin. Opt. Lett. 15 110201
[20]Hickstein D D, Ranitovic P, Witte S 2012 Phys. Rev. Lett. 109 073004
[21]Zhou Y, Tolstikhin O I and Morishita T 2016 Phys. Rev. Lett. 116 173001
[22]Tan J, Zhou Y M, He M 2018 Phys. Rev. Lett. 121 253203
[23]Xia Q  Z, Tao J  F, Cai J 2018 Phys. Rev. Lett. 121 143201
[24]Chelkowski S, Foisy C and Bandrauk A D 1998 Phys. Rev. A 57 1176
[25]Arbó D G, Ishikawa K L, Schiessl K 2010 Phys. Rev. A 81 021403
[26]Arbó D G, Persson E and Burgdörfer J 2006 Phys. Rev. A 74 063407
[27]Kobayashi Y, Reduzzi M, Chang K F 2018 Phys. Rev. Lett. 120 233201
[28]Eckle P, Pfeiffer A N, Cirelli C 2008 Science 322 1525
Related articles from Frontiers Journals
[1] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 024201
[2] Xu-Zhen Gao, Meng-Shuai Wang, Jia-Hao Zhao, Peng-Cheng Zhao, Xia Zhang, Yue Pan, Yongnan Li, Chenghou Tu, and Hui-Tian Wang. Generation and Tunable Focal Shift of the Hybridly Polarized Vector Optical Fields with Parabolic Symmetry[J]. Chin. Phys. Lett., 2020, 37(12): 024201
[3] Jian-Xing Zhao, Jian-Lin Song, Yao Zhou, Yi-Chao Liu, Jian-Hong Zhou. Switching between the Functions of Half-Wave Plate and Quarter-Wave Plate Simply by Using a Vanadium Dioxide Film in a Terahertz Metamaterial *[J]. Chin. Phys. Lett., 0, (): 024201
[4] Jian-Xing Zhao, Jian-Lin Song, Yao Zhou, Yi-Chao Liu, Jian-Hong Zhou. Switching between the Functions of Half-Wave Plate and Quarter-Wave Plate Simply by Using a Vanadium Dioxide Film in a Terahertz Metamaterial[J]. Chin. Phys. Lett., 2020, 37(6): 024201
[5] Meng Li, Gui-zhong Zhang, Xin Ding, Jian-quan Yao. Carrier Envelope Phase Description for an Isolated Attosecond Pulse by Momentum Vortices[J]. Chin. Phys. Lett., 2019, 36(6): 024201
[6] Yong Zhang, Xian-Ke Li, Cheng-Ping Huang. High-Efficiency Wide-Band Cross-Polarization Conversion Using Bi-layered Metal Hole Pairs[J]. Chin. Phys. Lett., 2018, 35(10): 024201
[7] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 024201
[8] Hai-Sha Niu, Lian-Qing Zhu, Jian-Jun Song. Laser Intensity Variation in Amplitude and Phase Induced by Elliptically Polarized Feedback[J]. Chin. Phys. Lett., 2018, 35(5): 024201
[9] Meng Xun, Yun Sun, Chen Xu, Yi-Yang Xie, Zhi Jin, Jing-Tao Zhou, Xin-Yu Liu, De-Xin Wu. Beam Steering Analysis in Optically Phased Vertical Cavity Surface Emitting Laser Array[J]. Chin. Phys. Lett., 2018, 35(3): 024201
[10] Qing-Chao Huang, Qi Wang, Cheng-Wu Yang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Wideband Tunable Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator and an Optical Bandpass Filter[J]. Chin. Phys. Lett., 2017, 34(8): 024201
[11] C. A. P. Janet, M. Lavanya, K. B. Rajesh, M. Udhayakumar, Z. Jaroszewicz, D. Velauthapillai. Tight Focusing Properties of Azimuthally Polarized Pair of Vortex Beams through a Dielectric Interface[J]. Chin. Phys. Lett., 2017, 34(7): 024201
[12] K. Prabakaran, P. Sangeetha, V. Karthik, K. B. Rajesh, A. M. Musthafa. Tight Focusing Properties of Phase Modulated Radially Polarized Laguerre Bessel Gaussian Beam[J]. Chin. Phys. Lett., 2017, 34(5): 024201
[13] Qi Wang, Wen-Ting Wang, Wei Chen, Jian-Guo Liu, Ning-Hua Zhu. Optical Vector Network Analyzer with an Improved Dynamic Range Based on a Polarization Multiplexing Electro-Optic Modulator[J]. Chin. Phys. Lett., 2017, 34(5): 024201
[14] Yu Si, Ling-Jun Kong, Yu Zhang, Zhi-Cheng Ren, Yue Pan, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Spatial-Variant Geometric Phase of Hybrid-Polarized Vector Optical Fields[J]. Chin. Phys. Lett., 2017, 34(4): 024201
[15] C. A. P. Janet, K. B. Rajesh, M. Udhayakumar, Z. Jaroszewicz, T. V. S. Pillai. Tight Focusing Properties of Radially Polarized Gaussian Beams with Pair of Vortices[J]. Chin. Phys. Lett., 2016, 33(12): 024201
Viewed
Full text


Abstract