CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Field- and Current-Driven Magnetization Reversal and Dynamic Properties of CoFeB-MgO-Based Perpendicular Magnetic Tunnel Junctions |
Qingwei Fu1†, Kaiyuan Zhou1†, Lina Chen1, Yongbing Xu2, Tiejun Zhou3*, Dunhui Wang3, Kequn Chi4, Hao Meng4, Bo Liu4, Ronghua Liu1,3*, and Youwei Du1,3 |
1National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 2York-Nanjing Joint Center (YNJC) for Spintronics and Nanoengineering, School of Electronics Science and Engineering, Nanjing University, Nanjing 210093, China 3Centre for Integrated Spintronic Devices, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China 4Key Laboratory of Spintronics Materials, Devices and Systems of Zhejiang Province, Hangzhou 311305, China
|
|
Cite this article: |
Qingwei Fu, Kaiyuan Zhou, Lina Chen et al 2020 Chin. Phys. Lett. 37 117501 |
|
|
Abstract We report a perpendicular magnetic tunnel junction (pMTJ) cell with a tunnel magnetoresistance (TMR) ratio of nearly 200% at room temperature based on CoFeB/Ta/CoFeB as the free layer (FL) and a synthetic antiferromagnetic (SAF) multilayer [Pt/Co]/Ru/[Pt/Co]/Ta/CoFeB as the reference layer (RL). The field-driven magnetization switching measurements show that the pMTJs exhibit an anomalous TMR hysteresis loop. The spin-polarized layer CoFeB of SAF-RL has a lower critical switching field than that of FL. The reason is related to the interlayer exchange coupling (IEC) through a moderately thick Ta spacer layer among SAF-RLs, which generates a moderate and negative bias magnetic field on CoFeB of RL. However, the IEC among RLs has a negligible influence on the current-driven magnetization switching of FL and its magnetization dynamics.
|
|
Received: 31 July 2020
Published: 08 November 2020
|
|
PACS: |
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
75.75.Jn
|
(Dynamics of magnetic nanoparticles)
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, the National Natural Science Foundation of China (Grant Nos. 11774150 and 11874135), and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20170627). |
|
|
[1] | Yu G et al. 2014 Nat. Nanotechnol. 9 548 |
[2] | Li Z P et al. 2016 Appl. Phys. Lett. 109 182403 |
[3] | Watanabe K et al. 2018 Nat. Commun. 9 663 |
[4] | Rehm L et al. 2019 Appl. Phys. Lett. 115 182404 |
[5] | Chatterjee J et al. 2019 Appl. Phys. Lett. 114 092407 |
[6] | Shadman A and Zhu J G 2019 Appl. Phys. Lett. 114 022403 |
[7] | Chen C H, Cheng Y H, Ko C W and Hsueh W J 2015 Appl. Phys. Lett. 107 152401 |
[8] | Yakushiji K et al. 2017 Appl. Phys. Lett. 110 092406 |
[9] | Lourembam J et al. 2018 Appl. Phys. Lett. 113 022403 |
[10] | Pathak S, Cha J, Jo K, Yoon H and Hong J 2017 Appl. Phys. Lett. 110 232401 |
[11] | Hämäläinen S J et al. 2017 Phys. Rev. Appl. 8 014020 |
[12] | Sato H et al. 2014 Appl. Phys. Lett. 105 062403 |
[13] | Choi G M, Shin I J, Min B C and Shin K H 2010 J. Appl. Phys. 108 073913 |
[14] | Sato H et al. 2013 IEEE Trans. Magn. 49 4437 |
[15] | Liu Y, Yu J and Zhong H 2019 J. Magn. Magn. Mater. 473 381 |
[16] | Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413 |
[17] | Nogués J et al. 2005 Phys. Rep. 422 65 |
[18] | Meiklejohn W H 1962 J. Appl. Phys. 33 1328 |
[19] | Bollero A et al. 2006 Appl. Phys. Lett. 89 152502 |
[20] | Vinai G et al. 2014 Appl. Phys. Lett. 104 162401 |
[21] | Teichert N et al. 2015 Appl. Phys. Lett. 106 192401 |
[22] | Fuchs G D et al. 2005 Appl. Phys. Lett. 86 152509 |
[23] | Diao Z et al. 2005 Appl. Phys. Lett. 87 232502 |
[24] | Huai Y, Pakala M, Diao Z and Ding Y 2005 Appl. Phys. Lett. 87 222510 |
[25] | Wen Z et al. 2014 Phys. Rev. Appl. 2 024009 |
[26] | Slonczewski J C 2005 Phys. Rev. B 71 024411 |
[27] | Sun J Z 2000 Phys. Rev. B 62 570 |
[28] | Sankey J C et al. 2006 Phys. Rev. Lett. 96 227601 |
[29] | Safranski C J, Chen Y J, Krivorotov I N and Sun J Z 2016 Appl. Phys. Lett. 109 132408 |
[30] | Auerbach E, Leder N, Gider S and Arthaber H 2018 IEEE Trans. Magn. 54 1 |
[31] | Dohi T, Kanai S, Matsukura F and Ohno H 2017 Appl. Phys. Lett. 111 072403 |
[32] | de Loubens G et al. 2009 Phys. Rev. Lett. 102 177602 |
[33] | Yamanouchi M et al. 2011 IEEE Magn. Lett. 2 3000304 |
[34] | Zhang L, Fang B, Cai J and Zeng Z 2018 Appl. Phys. Lett. 112 242408 |
[35] | He C et al. 2018 Phys. Rev. Appl. 10 034067 |
[36] | Enobio E C I et al. 2015 IEEE Magn. Lett. 6 1 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|