Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 117401    DOI: 10.1088/0256-307X/37/11/117401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Superconductor-Metal Quantum Transition at the EuO/KTaO$_{3}$ Interface
Yang Ma1†, Jiasen Niu1†, Wenyu Xing1, Yunyan Yao1, Ranran Cai1, Jirong Sun2,3, X. C. Xie1,4,5, Xi Lin1,4,5*, and Wei Han1*
1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
5Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Cite this article:   
Yang Ma, Jiasen Niu, Wenyu Xing et al  2020 Chin. Phys. Lett. 37 117401
Download: PDF(1775KB)   PDF(mobile)(1858KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the experimental investigation of the superconductor-metal quantum phase transition of the EuO/KTaO$_{3}$ interface. Around the transition, a divergence of the dynamical critical exponent is observed, which supports the quantum Griffiths singularity in the EuO/KTaO$_{3}$ interface. The quantum Griffiths singularity could be attributed to large rare superconducting regions and quenched disorders at the interface. Our results could pave the way for studying the exotic superconducting properties at the EuO/KTaO$_{3}$ interface.
Received: 23 September 2020      Published: 08 November 2020
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
  73.40.-c (Electronic transport in interface structures)  
  73.43.Nq (Quantum phase transitions)  
Fund: Supported by the National Key R&D Program of China (Grant Nos. 2019YFA0308401 and 2017YFA0303301), the National Natural Science Foundation of China (Grant Nos. 11974025, 11674009, and 11934016), the Beijing Natural Science Foundation (Grant No. 1192009), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/11/117401       OR      https://cpl.iphy.ac.cn/Y2020/V37/I11/117401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Ma
Jiasen Niu
Wenyu Xing
Yunyan Yao
Ranran Cai
Jirong Sun
X. C. Xie
Xi Lin
and Wei Han
[1] Saito Y, Nojima T and Iwasa Y 2017 Nat. Rev. Mater. 2 16094
[2] Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M 2008 Nature 456 624
[3] Li L, Richter C, Mannhart J and Ashoori R C 2011 Nat. Phys. 7 762
[4] Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y and Moler K A 2011 Nat. Phys. 7 767
[5] Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B and Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802
[6] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
[7] Liu X Y C, Jin D, Ma Y, Hsiao H, Lin Y, Sullivan T, Zhou X, Pearson J, Fisher B, Jiang J, Han W, Zuo J, Wen J, Fong D, Sun J, Zhou H and Bhattacharya A 2020 arXiv:2004.07416 [cond-mat.supr-con]
[8] Fisher D S 1992 Phys. Rev. Lett. 69 534
[9] Fisher D S 1995 Phys. Rev. B 51 6411
[10] Xing Y, Zhang H M, Fu H L, Liu H, Sun Y, Peng J P, Wang F, Lin X, Ma X C, Xue Q K, Wang J and Xie X C 2015 Science 350 542
[11] Shen S, Xing Y, Wang P, Liu H, Fu H, Zhang Y, He L, Xie X C, Lin X, Nie J and Wang J 2016 Phys. Rev. B 94 144517
[12] Xing Y, Zhao K, Shan P, Zheng F, Zhang Y, Fu H, Liu Y, Tian M, Xi C, Liu H, Feng J, Lin X, Ji S, Chen X, Xue Q K and Wang J 2017 Nano Lett. 17 6802
[13] Saito Y, Nojima T and Iwasa Y 2018 Nat. Commun. 9 778
[14] Zhang E, Zhi J, Zou Y C, Ye Z, Ai L, Shi J, Huang C, Liu S, Lin Z, Zheng X, Kang N, Xu H, Wang W, He L, Zou J, Liu J, Mao Z and Xiu F 2018 Nat. Commun. 9 4656
[15] Liu Y, Wang Z, Shan P, Tang Y, Liu C, Chen C, Xing Y, Wang Q, Liu H, Lin X, Xie X C and Wang J 2019 Nat. Commun. 10 3633
[16] Zhang C, Fan Y, Chen Q, Wang T, Liu X, Li Q, Yin Y and Li X 2019 NPG Asia Mater. 11 76
[17] Yun Y, Ma Y, Su T, Xing W, Chen Y, Yao Y, Cai R, Yuan W and Han W 2018 Phys. Rev. Mater. 2 034201
[18] Wang P, Huang K, Sun J, Hu J, Fu H and Lin X 2019 Rev. Sci. Instrum. 90 023905
[19]Berezinskii V L 1971 Sov. Phys.-JETP 32 493
[20]Berezinskii V L 1972 Sov. Phys.-JETP 34 610
[21] Jm K and Thouless D J 1972 J. Phys. C 5 L124
[22] Epstein K, Goldman A M and Kadin A M 1981 Phys. Rev. Lett. 47 534
[23] Sondhi S L, Girvin S M, Carini J P and Shahar D 1997 Rev. Mod. Phys. 69 315
[24] Goldman A M 2010 Int. J. Mod. Phys. B 24 4081
[25] Fisher M P A 1990 Phys. Rev. Lett. 65 923
[26] Vojta T, Farquhar A and Mast J 2009 Phys. Rev. E 79 011111
[27] Kovács I A and Iglói F 2010 Phys. Rev. B 82 054437
[28] Markovic N 2015 Science 350 509
[29] Vojta T and Hoyos J A 2014 Phys. Rev. Lett. 112 075702
[30] Vojta T 2006 J. Phys. A 39 R143
[31] Spivak B, Oreto P and Kivelson S A 2008 Phys. Rev. B 77 214523
[32] Kapitulnik A, Kivelson S A and Spivak B 2019 Rev. Mod. Phys. 91 011002
Related articles from Frontiers Journals
[1] Zi-Tao Zhang, Yu-Jie Qiao, Ting-Na Shao, Qiang Zhao, Xing-Yu Chen, Mei-Hui Chen, Fang-Hui Zhu, Rui-Fen Dou, Hai-Wen Liu, Chang-Min Xiong, and Jia-Cai Nie. Anomalous Metallic State Driven by Magnetic Field at the LaAlO$_{3}$/KTaO$_{3}$ (111) Interface[J]. Chin. Phys. Lett., 2023, 40(3): 117401
[2] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 117401
[3] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 117401
[4] Ziqin Yang, Shichun Huang, Yuan He, Xiangyang Lu, Hao Guo, Chunlong Li, Xiaofei Niu, Pingran Xiong, Yukun Song, Andong Wu, Bin Xie, Zhiming You, Qingwei Chu, Teng Tan, Feng Pan, Ming Lu, Didi Luo, Junhui Zhang, Shenghu Zhang, and Wenlong Zhan. Low-Temperature Baking Effect of the Radio-Frequency Nb$_{3}$Sn Thin Film Superconducting Cavity[J]. Chin. Phys. Lett., 2021, 38(9): 117401
[5] Ying Xiang, Qing Li, Yueying Li, Huan Yang, Yuefeng Nie, and Hai-Hu Wen. Physical Properties Revealed by Transport Measurements for Superconducting Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$ Thin Films[J]. Chin. Phys. Lett., 2021, 38(4): 117401
[6] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, and Lu Ji. Erratum: Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon [Chin. Phys. Lett. 36 (2019) 057401][J]. Chin. Phys. Lett., 2021, 38(2): 117401
[7] Shuai Zhang, Yiyan Wang, Chaoyang Ma, Wenliang Zhu, Zhian Ren, Lei Shan, and Genfu Chen. Superconductivity at the Normal Metal/Dirac Semimetal Cd$_3$As$_2$ Interface[J]. Chin. Phys. Lett., 2020, 37(7): 117401
[8] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 117401
[9] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 117401
[10] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 117401
[11] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 117401
[12] Jian Xing, Li-Tian Wang, Xiao-Xin Gao, Xue-Lian Liang, Kai-Yong He, Ting Xue, Sheng-Hui Zhao, Jin-Li Zhang, Ming He, Xin-Jie Zhao, Shao-Lin Yan, Pei Wang, Lu Ji. Growth of TlBa$_{2}$Ca$_{2}$Cu$_{3}$O$_{9}$ Epitaxial Thin Films by Two-Step Method in Argon[J]. Chin. Phys. Lett., 2019, 36(5): 117401
[13] Hui-Ying Liu, Jun-Ren Shi. Radiation-Induced Oscillating Gap States of Nonequilibrium Two-Dimensional Superconductors[J]. Chin. Phys. Lett., 2018, 35(6): 117401
[14] Yulong Huang, Zhongpei Feng, Shunli Ni, Jun Li, Wei Hu, Shaobo Liu, Yiyuan Mao, Huaxue Zhou, Fang Zhou, Kui Jin, Huabing Wang, Jie Yuan, Xiaoli Dong, Zhongxian Zhao. Superconducting (Li,Fe)OHFeSe Film of High Quality and High Critical Parameters[J]. Chin. Phys. Lett., 2017, 34(7): 117401
[15] Jie Liu, Li-Qun Zhang, Zhen-Nan Jiang, Kamal Ahmad, Jian-She Liu, Wei Chen. Superconducting Nanowire Single Photon Detector with Optical Cavity[J]. Chin. Phys. Lett., 2016, 33(08): 117401
Viewed
Full text


Abstract