CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Superconductor-Metal Quantum Transition at the EuO/KTaO$_{3}$ Interface |
Yang Ma1†, Jiasen Niu1†, Wenyu Xing1, Yunyan Yao1, Ranran Cai1, Jirong Sun2,3, X. C. Xie1,4,5, Xi Lin1,4,5*, and Wei Han1* |
1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China 2Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 4CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China 5Beijing Academy of Quantum Information Sciences, Beijing 100193, China
|
|
Cite this article: |
Yang Ma, Jiasen Niu, Wenyu Xing et al 2020 Chin. Phys. Lett. 37 117401 |
|
|
Abstract We report the experimental investigation of the superconductor-metal quantum phase transition of the EuO/KTaO$_{3}$ interface. Around the transition, a divergence of the dynamical critical exponent is observed, which supports the quantum Griffiths singularity in the EuO/KTaO$_{3}$ interface. The quantum Griffiths singularity could be attributed to large rare superconducting regions and quenched disorders at the interface. Our results could pave the way for studying the exotic superconducting properties at the EuO/KTaO$_{3}$ interface.
|
|
Received: 23 September 2020
Published: 08 November 2020
|
|
PACS: |
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
|
Fund: Supported by the National Key R&D Program of China (Grant Nos. 2019YFA0308401 and 2017YFA0303301), the National Natural Science Foundation of China (Grant Nos. 11974025, 11674009, and 11934016), the Beijing Natural Science Foundation (Grant No. 1192009), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000). |
|
|
[1] | Saito Y, Nojima T and Iwasa Y 2017 Nat. Rev. Mater. 2 16094 |
[2] | Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M 2008 Nature 456 624 |
[3] | Li L, Richter C, Mannhart J and Ashoori R C 2011 Nat. Phys. 7 762 |
[4] | Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y and Moler K A 2011 Nat. Phys. 7 767 |
[5] | Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B and Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802 |
[6] | Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196 |
[7] | Liu X Y C, Jin D, Ma Y, Hsiao H, Lin Y, Sullivan T, Zhou X, Pearson J, Fisher B, Jiang J, Han W, Zuo J, Wen J, Fong D, Sun J, Zhou H and Bhattacharya A 2020 arXiv:2004.07416 [cond-mat.supr-con] |
[8] | Fisher D S 1992 Phys. Rev. Lett. 69 534 |
[9] | Fisher D S 1995 Phys. Rev. B 51 6411 |
[10] | Xing Y, Zhang H M, Fu H L, Liu H, Sun Y, Peng J P, Wang F, Lin X, Ma X C, Xue Q K, Wang J and Xie X C 2015 Science 350 542 |
[11] | Shen S, Xing Y, Wang P, Liu H, Fu H, Zhang Y, He L, Xie X C, Lin X, Nie J and Wang J 2016 Phys. Rev. B 94 144517 |
[12] | Xing Y, Zhao K, Shan P, Zheng F, Zhang Y, Fu H, Liu Y, Tian M, Xi C, Liu H, Feng J, Lin X, Ji S, Chen X, Xue Q K and Wang J 2017 Nano Lett. 17 6802 |
[13] | Saito Y, Nojima T and Iwasa Y 2018 Nat. Commun. 9 778 |
[14] | Zhang E, Zhi J, Zou Y C, Ye Z, Ai L, Shi J, Huang C, Liu S, Lin Z, Zheng X, Kang N, Xu H, Wang W, He L, Zou J, Liu J, Mao Z and Xiu F 2018 Nat. Commun. 9 4656 |
[15] | Liu Y, Wang Z, Shan P, Tang Y, Liu C, Chen C, Xing Y, Wang Q, Liu H, Lin X, Xie X C and Wang J 2019 Nat. Commun. 10 3633 |
[16] | Zhang C, Fan Y, Chen Q, Wang T, Liu X, Li Q, Yin Y and Li X 2019 NPG Asia Mater. 11 76 |
[17] | Yun Y, Ma Y, Su T, Xing W, Chen Y, Yao Y, Cai R, Yuan W and Han W 2018 Phys. Rev. Mater. 2 034201 |
[18] | Wang P, Huang K, Sun J, Hu J, Fu H and Lin X 2019 Rev. Sci. Instrum. 90 023905 |
[19] | Berezinskii V L 1971 Sov. Phys.-JETP 32 493 |
[20] | Berezinskii V L 1972 Sov. Phys.-JETP 34 610 |
[21] | Jm K and Thouless D J 1972 J. Phys. C 5 L124 |
[22] | Epstein K, Goldman A M and Kadin A M 1981 Phys. Rev. Lett. 47 534 |
[23] | Sondhi S L, Girvin S M, Carini J P and Shahar D 1997 Rev. Mod. Phys. 69 315 |
[24] | Goldman A M 2010 Int. J. Mod. Phys. B 24 4081 |
[25] | Fisher M P A 1990 Phys. Rev. Lett. 65 923 |
[26] | Vojta T, Farquhar A and Mast J 2009 Phys. Rev. E 79 011111 |
[27] | Kovács I A and Iglói F 2010 Phys. Rev. B 82 054437 |
[28] | Markovic N 2015 Science 350 509 |
[29] | Vojta T and Hoyos J A 2014 Phys. Rev. Lett. 112 075702 |
[30] | Vojta T 2006 J. Phys. A 39 R143 |
[31] | Spivak B, Oreto P and Kivelson S A 2008 Phys. Rev. B 77 214523 |
[32] | Kapitulnik A, Kivelson S A and Spivak B 2019 Rev. Mod. Phys. 91 011002 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|