Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 117301    DOI: 10.1088/0256-307X/37/11/117301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface
Linwei Zhou1†, Chen-Guang Wang1†, Zhixin Hu2, Xianghua Kong1,3, Zhong-Yi Lu1, Hong Guo3, and Wei Ji1*
1Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
2Center for Joint Quantum Studies and Department of Physics, Institute of Science, Tianjin University, Tianjin 300350, China
3Centre for the Physics of Materials and Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8, Canada
Cite this article:   
Linwei Zhou, Chen-Guang Wang, Zhixin Hu et al  2020 Chin. Phys. Lett. 37 117301
Download: PDF(1651KB)   PDF(mobile)(1911KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We carry out ab initio density functional theory calculations to study manipulation of electronic structures of self-assembled molecular nanostructures on metal surfaces by investigating the geometric and electronic properties of glycine molecules on Cu(100). It is shown that a glycine monolayer on Cu(100) forms a two-dimensional hydrogen-bonding network between the carboxyl and amino groups of glycine using a first principles atomistic calculation on the basis of a recently found structure. This network includes at least two hydrogen-bonding chains oriented roughly perpendicular to each other. Through molecule–metal electronic hybridization, these two chains selectively hybridized with the two isotropic degenerate Cu(100) surface states, leading to two anisotropic quasi-one-dimensional surface states. Electrons occupying these two states can near-freely move from a molecule to its adjacent molecules directly through the intermolecular hydrogen bonds, rather than mediated by the substrate. This results in the experimentally observed anisotropic free-electron-like behavior. Our results suggest that hydrogen-bonding chains are likely candidates for charge conductors.
Received: 01 September 2020      Published: 08 November 2020
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11622437, 11804247, 61674171, and 11974422), the Fundamental Research Funds for the Central Universities of China and the Research Funds of Renmin University of China (Grant Nos. 19XNQ025 and 19XNH066), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/11/117301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I11/117301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Linwei Zhou
Chen-Guang Wang
Zhixin Hu
Xianghua Kong
Zhong-Yi Lu
Hong Guo
and Wei Ji
[1] Steiner T 2002 Angew. Chem. Int. Ed. 41 48
[2] Bernstein J, Davis Raymond E, Shimoni L and Chang N L 1995 Angew. Chem. Int. Ed. Engl. 34 1555
[3] Jones G, Jenkins S J and King D A 2006 Surf. Sci. 600 224
[4] Grabowski S J 2011 Chem. Rev. 111 2597
[5] Zhao G J and Han K L 2012 Acc. Chem. Res. 45 404
[6] Zhang J, Chen P C, Yuan B K, Ji W, Cheng Z H and Qiu X H 2013 Science 342 611
[7] Monig H, Amirjalayer S, Timmer A, Hu Z X, Liu L C, Arado O D et al. 2018 Nat. Nanotechnol. 13 371
[8] Sweetman A M, Jarvis S P, Sang H Q, Lekkas I, Rahe P, Wang Y et al. 2014 Nat. Commun. 5 3931
[9] Wang C G, Cheng Z H, Qiu X H and Ji W 2017 Chin. Chem. Lett. 28 759
[10] Barth J V, Costantini G and Kern K 2005 Nature 437 671
[11] Barth J V 2007 Annu. Rev. Phys. Chem. 58 375
[12]Lin N, Stepanow S, Ruben M and Barth J V 2009 Surface-Confined Supramolecular Coordination Chemistry in Templates in Chemistry III ed Broekmann P, Dotz K H and Schalley C A (Berlin: Springer-Verlag) vol 287 p 1
[13] Dong L, Liu P N and Lin N 2015 Acc. Chem. Res. 48 2765
[14] Liriano M L, Larson A M, Gattinoni C, Carrasco J, Baber A E, Lewis E A et al. 2018 J. Chem. Phys. 149 034703
[15] Pennec Y, Auwärter W, Schiffrin A, Weber-Bargioni A, Riemann A and Barth J V 2007 Nat. Nanotechnol. 2 99
[16] Kanazawa K, Sainoo Y, Konishi Y, Yoshida S, Taninaka A, Okada A et al. 2007 J. Am. Chem. Soc. 129 740
[17] Kanazawa K, Taninaka A, Takeuchi O and Shigekawa H 2007 Phys. Rev. Lett. 99 216102
[18] Temirov R, Soubatch S, Luican A and Tautz F 2006 Nature 444 350
[19] Feng M, Zhao J and Atomlike H 2008 Science 320 359
[20] Dougherty D B, Feng M, Petek H, Yates J T and Zhao J 2012 Phys. Rev. Lett. 109 266802
[21] Ji W, Lu Z Y and Gao H J 2008 Phys. Rev. B 77 113406
[22] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[23] Blochl P E 1994 Phys. Rev. B 50 17953
[24] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[25] Dion M, Rydberg H, Schroder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401
[26] Lee K, Murray E D, Kong L Z, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
[27] Klimes J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201
[28] Hu Z X, Lan H P and Ji W 2014 Sci. Rep. 21 532
[29] Hu Z X, Ji W and Guo H 2011 Phys. Rev. B 84 085414
[30] Dyer M S and Persson M 2008 J. Phys.: Condens. Matter 20 312002
[31] Du S X, Gao H J, Seidel C, Tsetseris L, Ji W, Kopf H et al. 2006 Phys. Rev. Lett. 97 156105
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 117301
[2] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 117301
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 117301
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 117301
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 117301
[6] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 117301
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 117301
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 117301
[9] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 117301
[10] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 117301
[11] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 117301
[12] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 117301
[13] Pengdong Wang, Yihao Wang, Bo Zhang, Yuliang Li, Sheng Wang, Yunbo Wu, Hongen Zhu, Yi Liu, Guobin Zhang, Dayong Liu, Yimin Xiong, and Zhe Sun. Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$[J]. Chin. Phys. Lett., 2020, 37(8): 117301
[14] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 117301
[15] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 117301
Viewed
Full text


Abstract