Chin. Phys. Lett.  2020, Vol. 37 Issue (11): 117302    DOI: 10.1088/0256-307X/37/11/117302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States
Na Jiang* and Min Lu
Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China
Cite this article:   
Na Jiang and Min Lu 2020 Chin. Phys. Lett. 37 117302
Download: PDF(646KB)   PDF(mobile)(642KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the behavior of two-dimensional electron gas in the fractional quantum Hall (FQH) regime in the presence of disorder potential. The principal component analysis is applied to a set of disordered Laughlin ground state model wave function to enable us to distill the model wave function of the pure Laughlin state. With increasing the disorder strength, the ground state wave function is expected to deviate from the Laughlin state and eventually leave the FQH phase. We investigate the phase transition from the Laughlin state to a topologically trivial state by analyzing the overlap between the random sample wave functions and the distilled ground state wave function. It is proposed that the cross point of the principal component amplitude and its counterpart is the critical disorder strength, which marks the collapse of the FQH regime.
Received: 02 September 2020      Published: 08 November 2020
PACS:  73.43.-f (Quantum Hall effects)  
  73.43.Jn (Tunneling)  
  73.43.Cd (Theory and modeling)  
  73.43.Nq (Quantum phase transitions)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11674282), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/11/117302       OR      https://cpl.iphy.ac.cn/Y2020/V37/I11/117302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Na Jiang and Min Lu
[1] Haldane F D M 1983 Phys. Rev. Lett. 51 605
[2]Jain J K 2007 Composite Fermions (Cambridge: Cambridge University Press)
[3] Moore G and Read N 1991 Nucl. Phys. B 360 362
[4] Bernevig B A and Haldane F D M 2008 Phys. Rev. Lett. 100 246802
[5] Laughlin R B 1983 Phys. Rev. Lett. 50 1395
[6] Wen X G and Niu Q 1990 Phys. Rev. B 41 9377
[7] Wen X G 1992 Int. J. Mod. Phys. B 6 1711
[8] Wen X G 1991 Phys. Rev. B 44 5708
[9] Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504
[10] Haldane F D M 2011 Phys. Rev. Lett. 107 116801
[11] Qiu R Z, Haldane F D M, Wan X, Yang K and Yi S 2012 Phys. Rev. B 85 115308
[12] Yang L P, Li Q and Hu Z X 2018 Chin. Phys. B 27 087306
[13] Wang H, Narayanan R, Wan X and Zhang F C 2012 Phys. Rev. B 86 035122
[14] Sheng D N, Wan X, Rezayi E H, Yang K, Bhatt R N and Haldane F D M 2003 Phys. Rev. Lett. 90 256802
[15] Wan X, Sheng D N, Rezayi E H, Yang K, Bhatt R N and Haldane F D M 2005 Phys. Rev. B 72 075325
[16] Liu Z and Bhatt R N 2016 Phys. Rev. Lett. 117 206801
[17] Liu Z and Bhatt R N 2017 Phys. Rev. B 96 115111
[18] Zhu W and Sheng D N 2019 Phys. Rev. Lett. 123 056804
[19] Lu M, Jiang N and Wan X 2019 Chin. Phys. Lett. 36 087301
[20] Jiang N, Ke S Y, Ji H X, Wang H, Hu Z X and Wan X 2020 Phys. Rev. B 102 115140
[21]Goodfellow I, Bengio Y and Courville A 2016 Deep Learning (New York: MIT Press)
[22] Pearson K 1901 Philos. Mag. 2 559
[23] Wang L 2016 Phys. Rev. B 94 195105
[24] Wang C and Zhai H 2017 Phys. Rev. B 96 144432
[25] Wetzel S J 2017 Phys. Rev. E 96 022140
[26] Hu W, Singh R R P and Scalettar R T 2017 Phys. Rev. E 95 062122
[27] Costa N C, Hu W, Bai Z J, Scalettar R T and Singh R R P 2017 Phys. Rev. B 96 195138
[28] Wang C and Zhai H 2018 Front. Phys. 13 130507
[29] Yang W Q, Li Q, Yang L P and Hu Z X 2019 Chin. Phys. B 28 067303
[30] Banerjee M, Heiblum M, Umansky V, Feldman D E, Oreg Y and Stern A 2018 Nature 559 205
Related articles from Frontiers Journals
[1] Tian-Sheng Zeng, Liangdong Hu, and W. Zhu. Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor $\nu=2/5$[J]. Chin. Phys. Lett., 2022, 39(1): 117302
[2] Bin Han, Junjie Zeng, and Zhenhua Qiao. In-Plane Magnetization-Induced Corner States in Bismuthene[J]. Chin. Phys. Lett., 2022, 39(1): 117302
[3] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 117302
[4] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 117302
[5] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 117302
[6] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 117302
[7] Qiu-Shi Wang, Bin Zhang, Wei-Zhu Yi, Meng-Nan Chen, Baigeng Wang, R. Shen. Impurity Effects at Surfaces of a Photon-Dressed Bi$_2$Se$_3$ Thin Film[J]. Chin. Phys. Lett., 2018, 35(10): 117302
[8] Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, Sheng-shi Li, Shi-shen Yan. Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides[J]. Chin. Phys. Lett., 2018, 35(8): 117302
[9] Ru Zheng, Rong-Qiang He, Zhong-Yi Lu. An Anderson Impurity Interacting with the Helical Edge States in a Quantum Spin Hall Insulator[J]. Chin. Phys. Lett., 2018, 35(6): 117302
[10] Xia-Yin Liu, Jia-Lu Wang, Wei You, Ting-Ting Wang, Hai-Yang Yang, Wen-He Jiao, Hong-Ying Mao, Li Zhang, Jie Cheng, Yu-Ke Li. Anisotropic Magnetoresistivity in Semimetal TaSb$_2$[J]. Chin. Phys. Lett., 2017, 34(12): 117302
[11] X.-X. Yuan, L. He, S.-T. Wang, D.-L. Deng, F. Wang, W.-Q. Lian, X. Wang, C.-H. Zhang, H.-L. Zhang, X.-Y. Chang, L.-M. Duan. Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator[J]. Chin. Phys. Lett., 2017, 34(6): 117302
[12] Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Guang-Tong Liu, Li Lu. Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers[J]. Chin. Phys. Lett., 2017, 34(6): 117302
[13] Xia Dai, Cong-Cong Le, Xian-Xin Wu, Sheng-Shan Qin, Zhi-Ping Lin, Jiang-Ping Hu. Topological Phase in Non-centrosymmetric Material NaSnBi[J]. Chin. Phys. Lett., 2016, 33(12): 117302
[14] Hua-Ling Yu, Zhang-Yin Zhai, Xin-Tian Bian. Integer Quantum Hall Effect in a Two-Orbital Square Lattice with Chern Number $C=2$[J]. Chin. Phys. Lett., 2016, 33(11): 117302
[15] SUN Liang, WAN Shao-Long. Chiral Current in the Lattice Model of Weyl Semimetal[J]. Chin. Phys. Lett., 2015, 32(5): 117302
Viewed
Full text


Abstract