CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface |
Linwei Zhou1†, Chen-Guang Wang1†, Zhixin Hu2, Xianghua Kong1,3, Zhong-Yi Lu1, Hong Guo3, and Wei Ji1* |
1Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China 2Center for Joint Quantum Studies and Department of Physics, Institute of Science, Tianjin University, Tianjin 300350, China 3Centre for the Physics of Materials and Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8, Canada
|
|
Cite this article: |
Linwei Zhou, Chen-Guang Wang, Zhixin Hu et al 2020 Chin. Phys. Lett. 37 117301 |
|
|
Abstract We carry out ab initio density functional theory calculations to study manipulation of electronic structures of self-assembled molecular nanostructures on metal surfaces by investigating the geometric and electronic properties of glycine molecules on Cu(100). It is shown that a glycine monolayer on Cu(100) forms a two-dimensional hydrogen-bonding network between the carboxyl and amino groups of glycine using a first principles atomistic calculation on the basis of a recently found structure. This network includes at least two hydrogen-bonding chains oriented roughly perpendicular to each other. Through molecule–metal electronic hybridization, these two chains selectively hybridized with the two isotropic degenerate Cu(100) surface states, leading to two anisotropic quasi-one-dimensional surface states. Electrons occupying these two states can near-freely move from a molecule to its adjacent molecules directly through the intermolecular hydrogen bonds, rather than mediated by the substrate. This results in the experimentally observed anisotropic free-electron-like behavior. Our results suggest that hydrogen-bonding chains are likely candidates for charge conductors.
|
|
Received: 01 September 2020
Published: 08 November 2020
|
|
PACS: |
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11622437, 11804247, 61674171, and 11974422), the Fundamental Research Funds for the Central Universities of China and the Research Funds of Renmin University of China (Grant Nos. 19XNQ025 and 19XNH066), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000). |
|
|
[1] | Steiner T 2002 Angew. Chem. Int. Ed. 41 48 |
[2] | Bernstein J, Davis Raymond E, Shimoni L and Chang N L 1995 Angew. Chem. Int. Ed. Engl. 34 1555 |
[3] | Jones G, Jenkins S J and King D A 2006 Surf. Sci. 600 224 |
[4] | Grabowski S J 2011 Chem. Rev. 111 2597 |
[5] | Zhao G J and Han K L 2012 Acc. Chem. Res. 45 404 |
[6] | Zhang J, Chen P C, Yuan B K, Ji W, Cheng Z H and Qiu X H 2013 Science 342 611 |
[7] | Monig H, Amirjalayer S, Timmer A, Hu Z X, Liu L C, Arado O D et al. 2018 Nat. Nanotechnol. 13 371 |
[8] | Sweetman A M, Jarvis S P, Sang H Q, Lekkas I, Rahe P, Wang Y et al. 2014 Nat. Commun. 5 3931 |
[9] | Wang C G, Cheng Z H, Qiu X H and Ji W 2017 Chin. Chem. Lett. 28 759 |
[10] | Barth J V, Costantini G and Kern K 2005 Nature 437 671 |
[11] | Barth J V 2007 Annu. Rev. Phys. Chem. 58 375 |
[12] | Lin N, Stepanow S, Ruben M and Barth J V 2009 Surface-Confined Supramolecular Coordination Chemistry in Templates in Chemistry III ed Broekmann P, Dotz K H and Schalley C A (Berlin: Springer-Verlag) vol 287 p 1 |
[13] | Dong L, Liu P N and Lin N 2015 Acc. Chem. Res. 48 2765 |
[14] | Liriano M L, Larson A M, Gattinoni C, Carrasco J, Baber A E, Lewis E A et al. 2018 J. Chem. Phys. 149 034703 |
[15] | Pennec Y, Auwärter W, Schiffrin A, Weber-Bargioni A, Riemann A and Barth J V 2007 Nat. Nanotechnol. 2 99 |
[16] | Kanazawa K, Sainoo Y, Konishi Y, Yoshida S, Taninaka A, Okada A et al. 2007 J. Am. Chem. Soc. 129 740 |
[17] | Kanazawa K, Taninaka A, Takeuchi O and Shigekawa H 2007 Phys. Rev. Lett. 99 216102 |
[18] | Temirov R, Soubatch S, Luican A and Tautz F 2006 Nature 444 350 |
[19] | Feng M, Zhao J and Atomlike H 2008 Science 320 359 |
[20] | Dougherty D B, Feng M, Petek H, Yates J T and Zhao J 2012 Phys. Rev. Lett. 109 266802 |
[21] | Ji W, Lu Z Y and Gao H J 2008 Phys. Rev. B 77 113406 |
[22] | Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131 |
[23] | Blochl P E 1994 Phys. Rev. B 50 17953 |
[24] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 |
[25] | Dion M, Rydberg H, Schroder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401 |
[26] | Lee K, Murray E D, Kong L Z, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101 |
[27] | Klimes J, Bowler D R and Michaelides A 2010 J. Phys.: Condens. Matter 22 022201 |
[28] | Hu Z X, Lan H P and Ji W 2014 Sci. Rep. 21 532 |
[29] | Hu Z X, Ji W and Guo H 2011 Phys. Rev. B 84 085414 |
[30] | Dyer M S and Persson M 2008 J. Phys.: Condens. Matter 20 312002 |
[31] | Du S X, Gao H J, Seidel C, Tsetseris L, Ji W, Kopf H et al. 2006 Phys. Rev. Lett. 97 156105 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|