CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor |
Chunyan Liao1, Yahui Jin1, Wei Zhang2, Ziming Zhu1*, and Mingxing Chen1* |
1Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China 2Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
|
|
Cite this article: |
Chunyan Liao, Yahui Jin, Wei Zhang et al 2020 Chin. Phys. Lett. 37 107505 |
|
|
Abstract We theoretically investigate physical properties of two-dimensional (2D) Fe$_{2}$Ga$_{2}$S$_{5}$ by employing first-principles calculations. It is found that it is an antiferromagnet with zigzag magnetic configuration orienting in the in-plane direction, with Néel temperatures around 160 K. The band structure of the ground state shows that it is a semiconductor with the indirect band gap of about 0.9 eV, which could be effectively tuned by the lattice strain. We predict that the carrier transport is highly anisotropic, with the electron mobility up to the order of $\sim$$10^3$ cm$^2$/(V$\cdot$s) much higher than the hole. These fantastic electronic properties make 2D Fe$_{2}$Ga$_{2}$S$_{5}$ a promising candidate for the future spintronics.
|
|
Received: 16 July 2020
Published: 29 September 2020
|
|
PACS: |
75.50.Ee
|
(Antiferromagnetics)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11704117, 11774084, U19A2090 and 11974076), and the Project of Educational Commission of Hunan Province of China (Grant No. 18A003). |
|
|
[1] | Gong C and Zhang X 2019 Science 363 eaav4450 |
[2] | Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 |
[3] | Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H et al. 2017 Nature 546 270 |
[4] | Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W et al. 2017 Nature 546 265 |
[5] | Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F, Sassa Y, Mansson M, Scott B L, Wakeham N, Bauer E D and Thompson J D 2016 Phys. Rev. B 93 144404 |
[6] | Zhuang H L, Kent P R C and Hennig R G 2016 Phys. Rev. B 93 134407 |
[7] | Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z et al. 2018 Nature 563 94 |
[8] | Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289 |
[9] | O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W et al. 2018 Nano Lett. 18 3125 |
[10] | Yuan Q Q, Guo Z, Shi Z Q, Zhao H, Jia Z Y, Wang Q, Sun J, Wu D and Li S C 2020 Chin. Phys. Lett. 37 077502 |
[11] | Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433 |
[12] | Wang X, Du K, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P et al. 2016 2D Mater. 3 031009 |
[13] | Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231 |
[14] | Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 |
[15] | Gong W, Leung C H, Sin C K, Zhang J, Zhang X, Xi B and Zhu J 2020 Chin. Phys. Lett. 37 027501 |
[16] | Sivadas N, Daniels M W, Swendsen R H, Okamoto S and Xiao D 2015 Phys. Rev. B 91 235425 |
[17] | Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904 |
[18] | Dogguy-Smiri L and Dung N H 1982 Acta Crystallogr. B 38 372 |
[19] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[20] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[21] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 |
[22] | Grau-Crespo R, Corà F, Sokol A A, de Leeuw N H and Catlow C R A 2006 Phys. Rev. B 73 035116 |
[23] | Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 |
[24] | Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A and Chantrell R W 2014 J. Phys.: Condens. Matter 26 103202 |
[25] | Nakatsuji S, Tonomura H, Onuma K, Nambu Y, Sakai O, Maeno Y, Macaluso R T and Chan J Y 2007 Phys. Rev. Lett. 99 157203 |
[26] | Reja S, Anisimov P S and Daghofer M 2017 Phys. Rev. B 96 085144 |
[27] | Anderson P W 1950 Phys. Rev. 79 350 |
[28] | Goodenough J B 1955 Phys. Rev. 100 564 |
[29] | Goodenough J B 1958 J. Phys. Chem. Solids 6 287 |
[30] | Kanamori J 1959 J. Phys. Chem. Solids 10 87 |
[31] | Bardeen J and Shockley W 1950 Phys. Rev. 80 72 |
[32] | Xi J, Long M, Tang L, Wang D and Shuai Z 2012 Nanoscale 4 4348 |
[33] | Bolotin K I, Sikes K J, Hone J, Stormer H L and Kim P 2008 Phys. Rev. Lett. 101 096802 |
[34] | Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 |
[35] | Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|