Chin. Phys. Lett.  2020, Vol. 37 Issue (10): 107505    DOI: 10.1088/0256-307X/37/10/107505
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor
Chunyan Liao1, Yahui Jin1, Wei Zhang2, Ziming Zhu1*, and Mingxing Chen1*
1Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
2Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
Cite this article:   
Chunyan Liao, Yahui Jin, Wei Zhang et al  2020 Chin. Phys. Lett. 37 107505
Download: PDF(2285KB)   PDF(mobile)(2273KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically investigate physical properties of two-dimensional (2D) Fe$_{2}$Ga$_{2}$S$_{5}$ by employing first-principles calculations. It is found that it is an antiferromagnet with zigzag magnetic configuration orienting in the in-plane direction, with Néel temperatures around 160 K. The band structure of the ground state shows that it is a semiconductor with the indirect band gap of about 0.9 eV, which could be effectively tuned by the lattice strain. We predict that the carrier transport is highly anisotropic, with the electron mobility up to the order of $\sim$$10^3$ cm$^2$/(V$\cdot$s) much higher than the hole. These fantastic electronic properties make 2D Fe$_{2}$Ga$_{2}$S$_{5}$ a promising candidate for the future spintronics.
Received: 16 July 2020      Published: 29 September 2020
PACS:  75.50.Ee (Antiferromagnetics)  
  73.20.-r (Electron states at surfaces and interfaces)  
  31.15.A- (Ab initio calculations)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11704117, 11774084, U19A2090 and 11974076), and the Project of Educational Commission of Hunan Province of China (Grant No. 18A003).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/10/107505       OR      https://cpl.iphy.ac.cn/Y2020/V37/I10/107505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chunyan Liao
Yahui Jin
Wei Zhang
Ziming Zhu
and Mingxing Chen
[1] Gong C and Zhang X 2019 Science 363 eaav4450
[2] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
[3] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H et al. 2017 Nature 546 270
[4] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W et al. 2017 Nature 546 265
[5] Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F, Sassa Y, Mansson M, Scott B L, Wakeham N, Bauer E D and Thompson J D 2016 Phys. Rev. B 93 144404
[6] Zhuang H L, Kent P R C and Hennig R G 2016 Phys. Rev. B 93 134407
[7] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z et al. 2018 Nature 563 94
[8] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289
[9] O'Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W et al. 2018 Nano Lett. 18 3125
[10] Yuan Q Q, Guo Z, Shi Z Q, Zhao H, Jia Z Y, Wang Q, Sun J, Wu D and Li S C 2020 Chin. Phys. Lett. 37 077502
[11] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433
[12] Wang X, Du K, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P et al. 2016 2D Mater. 3 031009
[13] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231
[14] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005
[15] Gong W, Leung C H, Sin C K, Zhang J, Zhang X, Xi B and Zhu J 2020 Chin. Phys. Lett. 37 027501
[16] Sivadas N, Daniels M W, Swendsen R H, Okamoto S and Xiao D 2015 Phys. Rev. B 91 235425
[17] Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904
[18] Dogguy-Smiri L and Dung N H 1982 Acta Crystallogr. B 38 372
[19] Blöchl P E 1994 Phys. Rev. B 50 17953
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[22] Grau-Crespo R, Corà F, Sokol A A, de Leeuw N H and Catlow C R A 2006 Phys. Rev. B 73 035116
[23] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[24] Evans R F L, Fan W J, Chureemart P, Ostler T A, Ellis M O A and Chantrell R W 2014 J. Phys.: Condens. Matter 26 103202
[25] Nakatsuji S, Tonomura H, Onuma K, Nambu Y, Sakai O, Maeno Y, Macaluso R T and Chan J Y 2007 Phys. Rev. Lett. 99 157203
[26] Reja S, Anisimov P S and Daghofer M 2017 Phys. Rev. B 96 085144
[27] Anderson P W 1950 Phys. Rev. 79 350
[28] Goodenough J B 1955 Phys. Rev. 100 564
[29] Goodenough J B 1958 J. Phys. Chem. Solids 6 287
[30] Kanamori J 1959 J. Phys. Chem. Solids 10 87
[31] Bardeen J and Shockley W 1950 Phys. Rev. 80 72
[32] Xi J, Long M, Tang L, Wang D and Shuai Z 2012 Nanoscale 4 4348
[33] Bolotin K I, Sikes K J, Hone J, Stormer H L and Kim P 2008 Phys. Rev. Lett. 101 096802
[34] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[35] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
Related articles from Frontiers Journals
[1] Jian-Gang Kong, Qing-Xu Li, Jian Li, Yu Liu, and Jia-Ji Zhu. Self-Supervised Graph Neural Networks for Accurate Prediction of Néel Temperature[J]. Chin. Phys. Lett., 2022, 39(6): 107505
[2] Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song. Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures[J]. Chin. Phys. Lett., 2022, 39(4): 107505
[3] Yu-Jie Yuan, Cheng-He Li, Shang-Jie Tian, He-Chang Lei, Xiao Zhang. Tuning of Magnetic Properties of $\alpha$-RuCl$_{3}$ Single Crystal by Cr Doping[J]. Chin. Phys. Lett., 2020, 37(6): 107505
[4] Yu-Jie Yuan, Cheng-He Li, Shang-Jie Tian, He-Chang Lei, Xiao Zhang. Tuning of Magnetic Properties of $\alpha$-RuCl$_{3}$ Single Crystal by Cr Doping *[J]. Chin. Phys. Lett., 0, (): 107505
[5] Huan-Cheng Chen, Zhe-Feng Lou, Yu-Xing Zhou, Qin Chen, Bin-Jie Xu, Shui-Jin Chen, Jian-Hua Du, Jin-Hu Yang, Hang-Dong Wang, Ming-Hu Fang. Negative Magnetoresistance in Antiferromagnetic Topological Insulator EuSn$_2$As$_2$$^{*}$[J]. Chin. Phys. Lett., 2020, 37(4): 107505
[6] Qi Wang, Qianheng Du, Cedomir Petrovic, Hechang Lei. Physical Properties of Half-Heusler Antiferromagnet MnPtSn Single Crystal[J]. Chin. Phys. Lett., 2020, 37(2): 107505
[7] Xu-Peng Zhao, Da-Hai Wei, Jun Lu, Si-Wei Mao, Zhi-Feng Yu, Jian-Hua Zhao. Tunneling Anisotropic Magnetoresistance in $L1_{0}$-MnGa Based Antiferromagnetic Perpendicular Tunnel Junction[J]. Chin. Phys. Lett., 2018, 35(8): 107505
[8] Pan Liu, Wei-Hua Wang, Wei-Chao Wang, Ya-Hui Cheng, Feng Lu, Hui Liu. D-Type Anti-Ferromagnetic Ground State in Ca$_{2}$Mn$_{2}$O$_{5}$[J]. Chin. Phys. Lett., 2017, 34(2): 107505
[9] CHEN Xu-Liang, SONG Wen-Hai, YANG Zhao-Rong. Field-Induced Structural Transition in the Bond Frustrated Spinel ZnCr2Se4[J]. Chin. Phys. Lett., 2015, 32(12): 107505
[10] MALIK Muhammad-Imran, SUN Ying, DENG Si-Hao, SHI Ke-Wen, HU Peng-Wei, WANG Cong. Nitrogen-Induced Change of Magnetic Properties in Antiperovskite-Type Carbide: Mn3InC[J]. Chin. Phys. Lett., 2015, 32(06): 107505
[11] CHU Li-Hua, WANG Cong, SUN Ying, LI Mei-Cheng, WAN Zi-Pei, WANG Yu, DOU Shang-Yi, CHU Yue. Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds[J]. Chin. Phys. Lett., 2015, 32(4): 107505
[12] LIU Zhao-Sen, YANG Cui-Hong, GU Bin, MA Rong, LI Qing-Fang. The Application of a New Simulation Approach to Ferrimagnetic Nanowires[J]. Chin. Phys. Lett., 2013, 30(9): 107505
[13] XU Yin-Jie, ZHAO Hui, CHEN Yu-Guang, YAN Yong-Hong. Spin-Peierls Instability in the Ferromagnetic Heisenberg Ladder[J]. Chin. Phys. Lett., 2013, 30(3): 107505
[14] YUAN Xue-Yong, XUE Xiao-Bo, SI Li-Fang, DU Jun, XU Qing-Yu. Exchange Bias in Polycrystalline BiFe1-xMnxO3/Ni81Fe19 Bilayers[J]. Chin. Phys. Lett., 2012, 29(9): 107505
[15] CHEN Feng-Liang,ZHOU Shi-Ming**. Magnetoresistance Effect in Antiferromagnet-Based Nanogranular Films[J]. Chin. Phys. Lett., 2012, 29(4): 107505
Viewed
Full text


Abstract