CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Quantum Oscillations and Electronic Structure in the Large-Chern-Number Topological Chiral Semimetal PtGa |
Sheng Xu1,2†, Liqin Zhou3,4†, Xiao-Yan Wang1,2†, Huan Wang1,2, Jun-Fa Lin1,2, Xiang-Yu Zeng1,2, Peng Cheng1,2, Hongming Weng3,4,5, and Tian-Long Xia1,2* |
1Department of Physics, Renmin University of China, Beijing 100872, China 2Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China 3Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 4CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China 5Songshan Lake Materials Laboratory, Dongguan 523808, China
|
|
Cite this article: |
Sheng Xu, Liqin Zhou, Xiao-Yan Wang et al 2020 Chin. Phys. Lett. 37 107504 |
|
|
Abstract We report the magnetoresistance (MR), de Haas-van Alphen (dHvA) oscillations and the electronic structures of single-crystal PtGa. The large unsaturated MR is observed with the magnetic field $B \parallel [111]$. Evident dHvA oscillations with the $B \parallel [001]$ configuration are observed, from which twelve fundamental frequencies are extracted and the spin-orbit coupling (SOC) induced band splitting is revealed. The light cyclotron effective masses are extracted from the fitting by the thermal damping term of the Lifshitz–Kosevich formula. Combining with the calculated frequencies from the first-principles calculations, the dHvA frequencies $F_1/F_3$ and $F_{11}/F_{12}$ are confirmed to originate from the electron pockets at $\mit\Gamma$ and $R$, respectively. The first-principles calculations also reveal the existence of spin-3/2 Rarita–Schwinger–Weyl fermions and time-reversal doubling of the spin-1 excitation at $\mit\Gamma$ and $R$ with large Chern numbers of $\pm4$ when SOC is included.
|
|
Received: 10 August 2020
Published: 29 September 2020
|
|
PACS: |
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
81.10.Fq
|
(Growth from melts; zone melting and refining)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0308602, 2018YFA0305700 and 2016YFA0300600), the National Natural Science Foundation of China (Grant Nos. 11874422 and 11574391), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant Nos. 19XNLG18 and 18XNLG14), the Chinese Academy of Sciences (Grant No. XDB28000000), the Science Challenge Project (Grant No. TZ2016004), the K. C. Wong Education Foundation (Grant No. GJTD-2018-01), the Beijing Municipal Science & Technology Commission (Grant No. Z181100004218001), and the Beijing Natural Science Foundation (Grant No. Z180008). |
|
|
[1] | Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 |
[2] | Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 |
[3] | Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z et al. 2015 Phys. Rev. X 5 031023 |
[4] | Zhang C L, Xu S Y, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N, Lee C C, Huang S M et al. 2016 Nat. Commun. 7 10735 |
[5] | Wang C, Sun H P, Lu H Z and Xie X 2017 Phys. Rev. Lett. 119 136806 |
[6] | Zhang C, Zhang Y, Yuan X, Lu S, Zhang J, Narayan A, Liu Y, Zhang H, Ni Z, Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H Z, Potter A C and Xiu F 2019 Nature 565 331 |
[7] | Tang F, Ren Y, Wang P, Zhong R, Schneeloch J, Yang S A, Yang K, Lee P A, Gu G, Qiao Z et al. 2019 Nature 569 537 |
[8] | Qin F, Li S, Du Z, Wang C, Lu H Z and Xie X 2020 arXiv:2003.02520 [cond-mat.mes-hall] |
[9] | Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C et al. 2015 Science 349 613 |
[10] | Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C et al. 2015 Nat. Commun. 6 7373 |
[11] | Lv B, Weng H, Fu B, Wang X, Miao H, Ma J, Richard P, Huang X, Zhao L, Chen G et al. 2015 Phys. Rev. X 5 031013 |
[12] | Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724 |
[13] | Xu S Y, Alidoust N, Belopolski I, Yuan Z, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G et al. 2015 Nat. Phys. 11 748 |
[14] | Xu S Y, Belopolski I, Sanchez D S, Zhang C, Chang G, Guo C, Bian G, Yuan Z, Lu H, Chang T R et al. 2015 Sci. Adv. 1 e1501092 |
[15] | Xu N, Weng H M, Lv B Q, Matt C E, Park J, Bisti F, Strocov V N et al. 2016 Nat. Commun. 7 11006 |
[16] | Liu Z, Yang L, Sun Y, Zhang T, Peng H, Yang H, Chen C, Zhang Y, f Guo Y, Prabhakaran D et al. 2016 Nat. Mater. 15 27 |
[17] | Arnold F, Shekhar C, Wu S C, Sun Y, Dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G et al. 2016 Nat. Commun. 7 11615 |
[18] | Rarita W and Schwinger J 1941 Phys. Rev. 60 61 |
[19] | Manes J L 2012 Phys. Rev. B 85 155118 |
[20] | Bradlyn B, Cano J, Wang Z, Vergniory M, Felser C, Cava R J and Bernevig B A 2016 Science 353 aaf5037 |
[21] | Xu Y and Duan L M 2016 Phys. Rev. A 94 053619 |
[22] | Liang L and Yu Y 2016 Phys. Rev. B 93 045113 |
[23] | Ezawa M 2016 Phys. Rev. B 94 195205 |
[24] | Tang P, Zhou Q and Zhang S C 2017 Phys. Rev. Lett. 119 206402 |
[25] | Chang G, Xu S Y, Wieder B J, Sanchez D S, Huang S M, Belopolski I, Chang T R, Zhang S, Bansil A, Lin H et al. 2017 Phys. Rev. Lett. 119 206401 |
[26] | Zhang T, Song Z, Alexandradinata A, Wen H, Fang C, Lu L and Fang Z 2018 Phys. Rev. Lett. 120 016401 |
[27] | Pshenay-Severin D, Ivanov Y V, Burkov A and Burkov A 2018 J. Phys.: Condens. Matter 30 135501 |
[28] | Sanchez D S, Belopolski I, Cochran T A, Xu X, Yin J X, Chang G, Xie W, Manna K, SüßV, Huang C Y et al. 2019 Nature 567 500 |
[29] | Rao Z, Li H, Zhang T, Tian S, Li C, Fu B, Tang C, Wang L, Li Z, Fan W et al. 2019 Nature 567 496 |
[30] | Takane D, Wang Z, Souma S, Nakayama K, Nakamura T, Oinuma H, Nakata Y, Iwasawa H, Cacho C, Kim T et al. 2019 Phys. Rev. Lett. 122 076402 |
[31] | Schröter N B, Pei D, Vergniory M G, Sun Y, Manna K, de Juan F, Krieger J A, Süss V, Schmidt M, Dudin P et al. 2019 Nat. Phys. 15 759 |
[32] | Xu X, Wang X, Cochran T A, Sanchez D S, Belopolski I, Wang G, Liu Y, Tien H J, Gui X, Xie W et al. 2019 Phys. Rev. B 100 045104 |
[33] | Wu D, Mi Z, Li Y, Wu W, Li P, Song Y, Liu G, Li G and Luo J 2019 Chin. Phys. Lett. 36 077102 |
[34] | Li H, Xu S, Rao Z C, Zhou L Q, Wang Z J, Zhou S M, Tian S J, Gao S Y, Li J J, Huang Y B, Lei H C, Weng H M, Sun Y J, Xia T L, Qian T and Ding H 2019 Nat. Commun. 10 5505 |
[35] | Xu S, Zhou L, Wang H, Wang X Y, Su Y, Cheng P, Weng H and Xia T L 2019 Phys. Rev. B 100 245146 |
[36] | Schröter N, Stolz S, Manna K, de Juan F, Vergniory M G, Krieger J A, Pei D, Dudin P, Kim T K, Cacho C et al. 2020 Science 369 179 aaz3480 |
[37] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[38] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[39] | Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309 |
[40] | Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 |
[41] | Shoenberg D 2009 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press) |
[42] | Yao M, Manna K, Yang Q, Fedorov A, Voroshnin V, Schwarze B V, Hornung J, Chattopadhyay S, Sun Z, Guin S N et al. 2020 Nat. Commun. 11 1 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|