FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber |
N. F. Zulkipli1, M. Batumalay2, F. S. M. Samsamnun1, M. B. H. Mahyuddin1, E. Hanafi1, T. F. T. M. N. Izam1, M. I. M. A. Khudus3, S. W. Harun1,4** |
1Photonics Engineering Laboratory, Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia 2Faculty of Information Technology & Sciences, Inti International University, Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan 3Department of Physics, University of Malaya, Kuala Lumpur 50603, Malaysia 4Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia
|
|
Cite this article: |
N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun et al 2019 Chin. Phys. Lett. 36 074203 |
|
|
Abstract Nanosecond pulse generation is demonstrated in a mode-locked erbium-doped fiber laser (EDFL) utilizing a samarium oxide (Sm$_{2}$O$_{3}$) film. The Sm$_{2}$O$_{3}$ film exhibits a modulation depth of 33%, which is suitable for mode-locking operation. The passively pulsed EDFL operates stably at 1569.8 nm within a pumping power from 109 to 146 mW. The train of generated output pulses has a pulse width of 356 nm repeated at a fundamental frequency of 0.97 MHz. The average output power of 3.91 mW is obtained at a pump power of 146 mW, corresponding to 4.0 nJ pulse energy. The experimental result indicates that the proposed Sm$_{2}$O$_{3}$ saturable absorber is viable for the construction of a flexible and reliably stable mode-locked pulsed fiber laser operating in the 1.5 μm region.
|
|
Received: 10 April 2019
Published: 20 June 2019
|
|
PACS: |
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Gd
|
(Q-switching)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
|
Fund: Supported by the INTI Research Grant Scheme 2018 under Grant No INTI-FITS-01-06-2018. |
|
|
[1] | Dornfeld D, Min S and Takeuchi Y 2006 CIRP Ann. 55 745 | [2] | Clowes J 2008 Opt. Photonik 3 36 | [3] | Luo L G, Chu P L and Liu H F 2000 IEEE Photon. Technol. Lett. 12 269 | [4] | Mao D, Liu X, Wang L, Lu H and Feng H 2010 Opt. Express 18 23024 | [5] | Chen L, Zhang M, Zhou C, Cai Y, Ren L and Zhang Z 2009 Electron. Lett. 45 731 | [6] | Azooz S M, Harun S W, Ahmad H, Halder A, Paul M C, Pal M and Bhadra S K 1975 Chem. Phys. Lett. 32 1 | [7] | Ismail M A, Harun S W, Zulkepely N R, Nor R M, Ahmad F and Ahmad H 2012 Appl. Opt. 51 8621 | [8] | Ahmad H, Ismail M A, Suthaskumar M, Tiu Z C, Harun S W, Zulkifli M Z, Samikannu S and Sivaraj S 2016 Laser Phys. Lett. 13 035103 | [9] | Ahmad H, Ruslan N, Ismail M, Reduan S, Lee C, Sathiyan S, Sivabalan S and Harun S W 2016 Appl. Opt. 55 1001 | [10] | Ismail E, Kadir N, Latiff A, Ahmad H and Harun S W 2016 RSC Adv. 6 72692 | [11] | Hisyam M B, Rusdi M F M, Latiff A A and Harun S W 2017 IEEE J. Sel. Top. Quantum Electron. 23 39 | [12] | Sotor J, Sobon G, Grodecki K and Abramski K 2014 Appl. Phys. Lett. 104 251112 | [13] | Haris H, Harun S, Muhammad A, Anyi C, Tan S, Ahmad F, Nor R, Zulkepely N and Arof H 2017 Opt. Laser Technol. 88 121 | [14] | Latiff A A, Rusdi M F M, Hisyam M B, Ahmad H and Harun S W 2017 J. Mod. Opt. 64 187 | [15] | Nady A, Ahmed M H M, Latiff A A, Numan A, Ooi C R and Harun S W 2017 Laser Phys. 27 065105 | [16] | Das G, Chaboyer Z J, Navratil J E and Drainville R A 2015 Opt. Commun. 334 258 | [17] | Xian T, Zhan L, Gao L, Zhang W and Zhang W 2019 Opt. Lett. 44 863 | [18] | Wang Z, Zhan L, Wu J, Zou Z, Zhang L, Qian K, He L and Fang X 2015 Opt. Lett. 40 3699 | [19] | Xu J, Wu S, Liu J, Wang Q, Yang Q H and Wang P 2012 Opt. Commun. 285 4466 | [20] | Samsamnun F S M, Zulkipli N F, Khudus M I M A, Bakar A S A and Majid W H A and Harun S W 2019 OSA Continuum 2 134 | [21] | Rosdin R Z R R, Ahmad M T, Muhammad A R, Jusoh Z, Arof H and Harun S W 2019 Chin. Phys. Lett. 36 054202 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|