FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
High Power Pulse Laser Reflection Sequence Combination with a Fast Steering Mirror |
Ke-Ling Gong1,3, Jian Xu1,3**, Lin Zhang1,3, Ya-Ding Guo1,3, Bao-Shan Wang1, Yang Li1, Shuai Li1,3, Zhong-Zheng Chen1,2, Lei Yuan1,2, Yang Kou1,2, Yi-Ting Xu1,2, Qin-Jun Peng1,3**, Zu-Yan Xu1,2 |
1Key Lab of Solid State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 2Key Lab of Function Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 3University of Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
Ke-Ling Gong, Jian Xu, Lin Zhang et al 2019 Chin. Phys. Lett. 36 074204 |
|
|
Abstract We propose and demonstrate a new approach for a high power pulse laser reflection sequence combination with a fast steering mirror (FSM). This approach possesses significant advantages for lasers combining with a variety of output power, wavelength, pulse duration, repetition rates and polarization. The maximum number of laser routes participating in combination principally depends on the FSM's adjustment time of the step response, lasers' repetition rates and pulse duration. A proof-of-principle experiment is performed with two 2-kW level pulsed beams. The results indicate that the combined beam has an excellent pointing stability with rms pointing jitter $\sim $8.5 $\mu$rad. Meanwhile, a high combining efficiency of 98.6% is achieved with maintaining good beam quality.
|
|
Received: 19 April 2019
Published: 20 June 2019
|
|
PACS: |
42.60.By
|
(Design of specific laser systems)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
42.60.Lh
|
(Efficiency, stability, gain, and other operational parameters)
|
|
42.15.Eq
|
(Optical system design)
|
|
|
Fund: Supported by the Knowledge Innovation Program of Chinese Academy of Sciences under Gant No GJJSTD20180004. |
|
|
[1] | Karlsen S R, Price K, Reynolds M et al 2009 Proc. SPIE 7198 71980T-1 | [2] | Richardson D J, Nilsson J and Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63 | [3] | Dawson J W, Messerly M J, Beach R J et al 2008 Opt. Express 16 13240 | [4] | Li Y Z, Qian L J, Lu D Q et al 2007 Opt. Laser Technol. 39 957 | [5] | Wang X L, Zhou P, Leng J Y et al 2011 IEEE Photon. Technol. Lett. 23 980 | [6] | Liu Z J, Ma P F, Su R T et al 2017 J. Opt. Soc. Am. B 34 A7 | [7] | Qi Y F, Liu C, Zhou J et al 2009 Appl. Opt. 48 5514 | [8] | Dahl K, Raaba M and Tholla H D 2014 Proc. SPIE 9251 925109 | [9] | Tian Z S, Miao J G, Xu Z J et al 2015 Chin. Phys. Lett. 32 124202 | [10] | Jin Y Y, Zou Y G, Ma X H et al 2012 International Conference on Optoelectronics and Microelectronics (Changchun, China 23–25 August 2012) p 87 | [11] | Van Zandt N R, Cusumano S J, Bartell R J et al 2012 Opt. Eng. 51 104301 | [12] | Bammer F, Holzinger B and Schumi T 2006 Opt. Express 14 3324 | [13] | Sevian A, Andrusyak O, Ciapurin I et al 2008 Opt. Lett. 33 384 | [14] | Xia L, Han X D and Shao J F 2014 Chin. Opt. Lett. 7 801 | [15] | Liang X B, Chen L M, Li C et al 2015 High Power Laser Part. Beams 27 071012 | [16] | Jian X, Gao H W, Xu Y T et al 2013 Appl. Opt. 52 208 | [17] | Wang Z X, Zhang B, Li X T et al 2018 Optik 172 995 | [18] | Ding L, Li S, Lu Z W et al 2016 Optik 127 6056 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|