Chin. Phys. Lett.  2019, Vol. 36 Issue (7): 074203    DOI: 10.1088/0256-307X/36/7/074203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber
N. F. Zulkipli1, M. Batumalay2, F. S. M. Samsamnun1, M. B. H. Mahyuddin1, E. Hanafi1, T. F. T. M. N. Izam1, M. I. M. A. Khudus3, S. W. Harun1,4**
1Photonics Engineering Laboratory, Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
2Faculty of Information Technology & Sciences, Inti International University, Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan
3Department of Physics, University of Malaya, Kuala Lumpur 50603, Malaysia
4Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya, Indonesia
Cite this article:   
N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun et al  2019 Chin. Phys. Lett. 36 074203
Download: PDF(2112KB)   PDF(mobile)(2108KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nanosecond pulse generation is demonstrated in a mode-locked erbium-doped fiber laser (EDFL) utilizing a samarium oxide (Sm$_{2}$O$_{3}$) film. The Sm$_{2}$O$_{3}$ film exhibits a modulation depth of 33%, which is suitable for mode-locking operation. The passively pulsed EDFL operates stably at 1569.8 nm within a pumping power from 109 to 146 mW. The train of generated output pulses has a pulse width of 356 nm repeated at a fundamental frequency of 0.97 MHz. The average output power of 3.91 mW is obtained at a pump power of 146 mW, corresponding to 4.0 nJ pulse energy. The experimental result indicates that the proposed Sm$_{2}$O$_{3}$ saturable absorber is viable for the construction of a flexible and reliably stable mode-locked pulsed fiber laser operating in the 1.5 μm region.
Received: 10 April 2019      Published: 20 June 2019
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Gd (Q-switching)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Fund: Supported by the INTI Research Grant Scheme 2018 under Grant No INTI-FITS-01-06-2018.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/7/074203       OR      https://cpl.iphy.ac.cn/Y2019/V36/I7/074203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
N. F. Zulkipli
M. Batumalay
F. S. M. Samsamnun
M. B. H. Mahyuddin
E. Hanafi
T. F. T. M. N. Izam
M. I. M. A. Khudus
S. W. Harun
[1]Dornfeld D, Min S and Takeuchi Y 2006 CIRP Ann. 55 745
[2]Clowes J 2008 Opt. Photonik 3 36
[3]Luo L G, Chu P L and Liu H F 2000 IEEE Photon. Technol. Lett. 12 269
[4]Mao D, Liu X, Wang L, Lu H and Feng H 2010 Opt. Express 18 23024
[5]Chen L, Zhang M, Zhou C, Cai Y, Ren L and Zhang Z 2009 Electron. Lett. 45 731
[6]Azooz S M, Harun S W, Ahmad H, Halder A, Paul M C, Pal M and Bhadra S K 1975 Chem. Phys. Lett. 32 1
[7]Ismail M A, Harun S W, Zulkepely N R, Nor R M, Ahmad F and Ahmad H 2012 Appl. Opt. 51 8621
[8]Ahmad H, Ismail M A, Suthaskumar M, Tiu Z C, Harun S W, Zulkifli M Z, Samikannu S and Sivaraj S 2016 Laser Phys. Lett. 13 035103
[9]Ahmad H, Ruslan N, Ismail M, Reduan S, Lee C, Sathiyan S, Sivabalan S and Harun S W 2016 Appl. Opt. 55 1001
[10]Ismail E, Kadir N, Latiff A, Ahmad H and Harun S W 2016 RSC Adv. 6 72692
[11]Hisyam M B, Rusdi M F M, Latiff A A and Harun S W 2017 IEEE J. Sel. Top. Quantum Electron. 23 39
[12]Sotor J, Sobon G, Grodecki K and Abramski K 2014 Appl. Phys. Lett. 104 251112
[13]Haris H, Harun S, Muhammad A, Anyi C, Tan S, Ahmad F, Nor R, Zulkepely N and Arof H 2017 Opt. Laser Technol. 88 121
[14]Latiff A A, Rusdi M F M, Hisyam M B, Ahmad H and Harun S W 2017 J. Mod. Opt. 64 187
[15]Nady A, Ahmed M H M, Latiff A A, Numan A, Ooi C R and Harun S W 2017 Laser Phys. 27 065105
[16]Das G, Chaboyer Z J, Navratil J E and Drainville R A 2015 Opt. Commun. 334 258
[17]Xian T, Zhan L, Gao L, Zhang W and Zhang W 2019 Opt. Lett. 44 863
[18]Wang Z, Zhan L, Wu J, Zou Z, Zhang L, Qian K, He L and Fang X 2015 Opt. Lett. 40 3699
[19]Xu J, Wu S, Liu J, Wang Q, Yang Q H and Wang P 2012 Opt. Commun. 285 4466
[20]Samsamnun F S M, Zulkipli N F, Khudus M I M A, Bakar A S A and Majid W H A and Harun S W 2019 OSA Continuum 2 134
[21]Rosdin R Z R R, Ahmad M T, Muhammad A R, Jusoh Z, Arof H and Harun S W 2019 Chin. Phys. Lett. 36 054202
Related articles from Frontiers Journals
[1] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 074203
[2] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 074203
[3] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 074203
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 074203
[5] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 074203
[6] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 074203
[7] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 074203
[8] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 074203
[9] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 074203
[10] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 074203
[11] Guan Wang, Lixin Xu, Chun Gu. Passive, Stable and Order-Adjustable SBS Q-Switching Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(8): 074203
[12] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 074203
[13] Lei Zhao, Pei-Jun Yao, Chun Gu, Li-Xin Xu. Raman-Assisted Passively Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(4): 074203
[14] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 074203
[15] Yue-e Chen, Yun-kai Zhou, De-wang Yang, Wei Yan, Yong Wang. A Temperature-Insensitive Amplified Spontaneous Emission Broadband Source Based on Er-Doped Fiber[J]. Chin. Phys. Lett., 2018, 35(4): 074203
Viewed
Full text


Abstract