Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 067801    DOI: 10.1088/0256-307X/36/6/067801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Nonlinear Optical Rectification, Second and Third Harmonic Generations in Square-Step and Graded-Step Quantum Wells under Intense Laser Field
O. Ozturk1, E. Ozturk2**, S. Elagoz3
1Department of Nanotechnology Engineering, Cumhuriyet University, Sivas 58140, Turkey
2Department of Physics, Cumhuriyet University, Sivas 58140, Turkey
3ASELSAN-Microelectronics, Guidance & Electro-Optics, Ankara, Turkey
Cite this article:   
O. Ozturk, E. Ozturk, S. Elagoz 2019 Chin. Phys. Lett. 36 067801
Download: PDF(684KB)   PDF(mobile)(673KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For square-step quantum wells (SSQWs) and graded-step quantum wells (GSQWs), the nonlinear optical rectification (NOR), second harmonic generation (SHG) and third harmonic generation (THG) coefficients under an intense laser field (ILF) are analyzed. The found results indicate that ILF can ensure a vital influence on the shape and height of the confined potential profile of both SSQWs and GSQWs, and alterations of the dipole moment matrix elements and the energy levels are adhered on the profile of the confined potential. According to the results, the potential profile and height of the GSQWs are affected more significantly by ILF intensity compared to SSQWs. These results indicate that NOR, SHG and THG coefficients of SSQWs and GSQWs may be calibrated in a preferred energy range and the magnitude of the resonance peak (RP) by tuning the ILF parameter. It is feasible to classify blue or red shifts in RP locations of NOR, SHG and THG coefficients by varying the ILF parameter. Our results can be useful in investigating new ways of manipulating the opto-electronic properties of semiconductor QW devices.
Received: 20 February 2019      Published: 18 May 2019
PACS:  78.67.De (Quantum wells)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  73.21.Fg (Quantum wells)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/067801       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/067801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
O. Ozturk
E. Ozturk
S. Elagoz
[1]Jiang X, Li S S and Tidrow M Z 1999 Physica E 5 27
[2]Leobandung E, Guo L and Chou S 1995 Appl. Phys. Lett. 67 2338
[3]Niculescu E, Radu A and Iorga A 2008 University Politehnica of Bucharest Sci. Bull. Ser. A 70 51
[4]Ozturk E 2015 Superlattices Microstruct. 82 303
[5]Phuc H V and Tung L V 2014 Superlattices Microstruct. 71 124
[6]Karabulut I 2010 Appl. Surf. Sci. 256 7570
[7]Ozturk E and Sokmen I 2012 Opt. Commun. 285 5223
[8]Niculescu E C and Eseanu N 2011 Eur. Phys. J. B 79 313
[9]Ozturk E 2010 Eur. Phys. J. B 75 197
[10]Fulco U L, Albuquerque E L, Mauriz P W and Vasconcelos M S 2013 Phys. Lett. A 377 582
[11]Unterrainer K, Heyman J N, Craig K, Galdrikian B, Sherwin M S, Campman K, Hopkins P F and Gossard A C 1996 Semicond. Sci. Technol. 11 1591
[12]Vodopyanov K L, Chazapisdag V, Phillipsdag C, Sungddag B and HarrisJr J S 1997 Semicond. Sci. Technol. 12 708
[13]Vodopyanov K L 2008 Laser Photon. Rev. 2 11
[14]Zavvari M, Abedi K, Yusefli A and Karimi M 2015 Optik 126 1861
[15]Zeiri N, Sfina N, Abdi-Ben Nasrallah S, Lazzari J L and Said M 2013 Infrared Phys. Technol. 60 137
[16]Bhattacharya P and Mi Z 2007 Proc. IEEE 95 1723
[17]Baskoutas S, Paspalakis E and Terzis A F 2007 J. Phys.: Condens. Matter 19 395024
[18]Karimi M J and Keshavarz A 2012 Physica E 44 1900
[19]Sakiroglu S, Ungan F, Yesilgul U, Mora-Ramos M E, Duque C A, Kasapoglu E, Sari H and Sokmen I 2012 Phys. Lett. A 376 1875
[20]Aytekin O, Turgut S and Tomak M 2012 Physica E 44 1612
[21]Xie W 2014 J. Lumin. 145 283
[22]Martinez-Orozco J C, Mora-Ramos M E and Duque C A 2012 J. Lumin. 132 449
[23]Liu X, Zou L, Liu C, Zhang Z H and Yuan J H 2016 Opt. Mater. 53 218
[24]Restrepo R L, Gonzalez-Pereira J P, Kasapoglu E, Morales A L and Duque C A 2018 Opt. Mater. 86 590
[25]Eseanu N, Niculescu E C and Burileanu L M 2009 Physica E 41 1386
[26]Ozturk E 2016 Opt. Quantum Electron. 48 269
[27]Lima F M S, Amato M A, Nunes O A C, Fonseca A L A, Enders B G and Silva Jr E F 2009 J. Appl. Phys. 105 123111
[28]Kuech T F, Babcock S E and Mawst L 2016 Appl. Phys. Rev. 3 040801
[29]Devenyi G A, Woo S Y, Ghanad-Tavakoli S, Hughes R A, Kleiman R N, Botton G A and Preston J S 2011 J. Appl. Phys. 110 124316
[30]Owen J H G, Barvosa-Carter W and Zinck J J 2000 Appl. Phys. Lett. 76 3070
[31]Mukai K, Sugawara M and Yamazaki S 1994 Phys. Rev. B 50 2273
[32]Yuh P F and Wang K L 1989 J. Appl. Phys. 65 4377
[33]Ozturk E 2015 Eur. Phys. J. Plus 130 237
[34]Zhao G J, Liang X X and Ban S L 2003 Phys. Lett. A 319 191
[35]Ozturk E and Sokmen I 2015 Int. J. Mod. Phys. B 29 1550030
[36]Ozturk E 2014 Opt. Commun. 332 136
[37]Peter A J and Navaneethakrishnan K 2008 Superlattices Microstruct. 43 63
[38]Ozturk E and Sokmen I 2013 J. Lumin. 134 42
[39]Pont M, Walet N R, Gavrila M and McCurdy C W 1988 Phys. Rev. Lett. 61 939
[40]Niculescu E C 2017 Opt. Mater. 64 540
[41]Zhang C 2001 Appl. Phys. Lett. 78 4187
[42]Ozturk E 2016 Laser Phys. 26 096102
Related articles from Frontiers Journals
[1] Xiaorui Wang and Shijie Xu. Analytic S-Shaped Temperature Dependence of Peak Positions of the Localized-State Ensemble Luminescence and Application in the Analysis of Luminescence in Non- and Semi-Polar InGaN/GaN Quantum-Wells Micro-Array[J]. Chin. Phys. Lett., 2022, 39(10): 067801
[2] Sheng Cao, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. Carrier Dynamics Determined by Carrier-Phonon Coupling in InGaN/GaN Multiple Quantum Well Blue Light Emitting Diodes[J]. Chin. Phys. Lett., 2019, 36(2): 067801
[3] Qing-feng Wu, Sheng Cao, Chun-lan Mo, Jian-li Zhang, Xiao-lan Wang, Zhi-jue Quan, Chang-da Zheng, Xiao-ming Wu, Shuan Pan, Guang-xu Wang, Jie Ding, Long-quan Xu, Jun-lin Liu, Feng-yi Jiang. Effects of Hydrogen Treatment in Barrier on the Electroluminescence of Green InGaN/GaN Single-Quantum-Well Light-Emitting Diodes with V-Shaped Pits Grown on Si Substrates[J]. Chin. Phys. Lett., 2018, 35(9): 067801
[4] Chang Wang, Wenwu Pan, Konstantin Kolokolov, Shumin Wang. Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the $k\cdot p$ Model[J]. Chin. Phys. Lett., 2018, 35(5): 067801
[5] Shu-Shan Huang, Yu Zhang, Yong-Ping Liao, Cheng-Ao Yang, Xiao-Li Chai, Ying-Qiang Xu, Hai-Qiao Ni, Zhi-Chuan Niu. High-Power Single-Spatial-Mode GaSb Tapered Laser around 2.0μm with Very Small Lateral Beam Divergence[J]. Chin. Phys. Lett., 2017, 34(8): 067801
[6] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 067801
[7] Bing-Hui Niu, Teng-Fei Yan, Hai-Qiao Ni, Zhi-Chuan Niu, Xin-Hui Zhang. Tuning of the Electron Spin Relaxation Anisotropy via Optical Gating in GaAs/AlGaAs Quantum Wells[J]. Chin. Phys. Lett., 2016, 33(10): 067801
[8] Xiao-Guang Wu. Electron-Elastic-Wave Interaction in a Two-Dimensional Topological Insulator[J]. Chin. Phys. Lett., 2016, 33(02): 067801
[9] SONG Yu-Zhi, ZHANG Yu, SONG Jia-Kun, LI Kang-Wen, ZHANG Zu-Yin, XU Yun, SONG Guo-Feng, CHEN Liang-Hui. Single Mode 2 μm GaSb Based Laterally Coupled Distributed Feedback Quantum-Well Laser Diodes with Metal Grating[J]. Chin. Phys. Lett., 2015, 32(07): 067801
[10] CHEN Xi-Ren, SONG Yu-Xin, ZHU Liang-Qing, QI Zhen, ZHU Liang, ZHA Fang-Xing, GUO Shao-Ling, WANG Shu-Min, SHAO Jun. Bismuth Effects on Electronic Levels in GaSb(Bi)/AlGaSb Quantum Wells Probed by Infrared Photoreflectance[J]. Chin. Phys. Lett., 2015, 32(06): 067801
[11] WANG Hai-Jiao, LI Yu-Dong, GUO Qi, MA Li-Ya, WEN Lin, WANG Bo. Room-Temperature Annealing of 1 MeV Electron Irradiated Lattice Matched In0.53Ga0.47As/InP Multiple Quantum Wells[J]. Chin. Phys. Lett., 2015, 32(5): 067801
[12] Emine Ozturk, Ismail Sokmen. Nonlinear Intersubband Transitions in Square and Graded Quantum Wells Modulated by Intense Laser Field[J]. Chin. Phys. Lett., 2014, 31(12): 067801
[13] XING Jun-Liang, ZHANG Yu, LIAO Yong-Ping, WANG Juan, XIANG Wei, XU Ying-Qiang, WANG Guo-Wei, REN Zheng-Wei, NIU Zhi-Chuan. Room-Temperature Operation of 2.4 μm InGaAsSb/AlGaAsSb Quantum-Well Laser Diodes with Low-Threshold Current Density[J]. Chin. Phys. Lett., 2014, 31(05): 067801
[14] ZHANG Xiao-Fu, LI Yu-Dong, GUO Qi, LU Wu . Low-Dose 1 MeV Electron Irradiation-Induced Enhancement in the Photoluminescence Emission of Ga-Rich InGaN Multiple Quantum Wells[J]. Chin. Phys. Lett., 2013, 30(7): 067801
[15] LI Zhi-Dong, XIAO Hong-Ling, WANG Xiao-Liang, WANG Cui-Mei, DENG Qing-Wen JING Liang, DING Jie-Qin, WANG Zhan-Guo, HOU Xun . The Growth and Fabrication of InGaN/GaN Multi-Quantum Well Solar Cells on Si(111) Substrates[J]. Chin. Phys. Lett., 2013, 30(6): 067801
Viewed
Full text


Abstract