Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 067504    DOI: 10.1088/0256-307X/36/6/067504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetization Reversal in Magnetic Bilayer Systems
Li-Peng Jin, Yong-Jun Liu**
School of Physical Science and Technology, Yangzhou University, Yangzhou 225002
Cite this article:   
Li-Peng Jin, Yong-Jun Liu 2019 Chin. Phys. Lett. 36 067504
Download: PDF(755KB)   PDF(mobile)(755KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnetization reversal in magnetic soft/hard bilayer systems is studied analytically by means of a variational method for magnetic energies in a continuum model. The demagnetization curve is involved with nonlinear equations, and the solution is given implicitly in the form of Jacobi functions, which is valid for the total reversal process. Based on the non-trivial solutions, hysteresis loops, as well as the maximum energy product $(BH)_{\max}$ versus thicknesses of soft/hard layers are obtained. With regard to $(BH)_{\max}$, improvement of the remanence competes with loss of coercive force. As a result, an optimum condition exists. For a given thickness of the hard layer, the optimum condition at which the largest $(BH)_{\max}$ could be achieved is discussed, which is slightly different from previous works.
Received: 03 March 2019      Published: 18 May 2019
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.60.Jk (Magnetization reversal mechanisms)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11647316 and 11847313.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/067504       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/067504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li-Peng Jin
Yong-Jun Liu
[1]Zhao G P and Wang X L 2006 Phys. Rev. B 74 012409
[2]Asti G, Solzi M, Ghidini M and Neri F M 2004 Phys. Rev. B 69 174401
[3]Parmar H, Xiao T, Chaudhary V, Zhong Y and Ramanujan R 2017 Nanoscale 9 13956
[4]Li D, Wang H, Ma Z, Liu X et al 2018 Nanoscale 10 4061
[5]Thirion C, Wernsdorfer W and Mailly D 2003 Nat. Mater. 2 524
[6]Nembach H T et al 2007 Appl. Phys. Lett. 90 062503
[7]Moriyama T et al 2007 Appl. Phys. Lett. 90 152503
[8]Yue M, Zhang X Y and Liu P J 2017 Nanoscale 9 3674
[9]Cui W B, Takahashi Y K and Hono K 2012 Adv. Mater. 24 6530
[10]Coehoorn R, de Mooij D B, Duchateau J P W B and Buschow K H J 1988 J. Phys. (Paris) 49 669
[11]Ding J, McCormick P G and Street R 1993 J. Magn. Magn. Mater. 124 1
[12]Müller K H , Schneider J, Handstein A, Eckert D, Nothnagel P and Kirchmayr H R 1991 Mater. Sci. & Eng. A 133 151
[13]Hernando A 1992 J. Magn. Magn. Mater. 117 154
[14]Kneller E and Hawig R (unpublished)
Kneller E 1991 IEEE Trans. Magn. 27 3588
[15]Callen E, Liu Y J and Cullen J R 1977 Phys. Rev. B 16 263
[16]Skomski R and Coey J M D 1993 Phys. Rev. B 48 15812
[17]Zhao H W, Rong C B, Zhang J, Zhang S Y and Shen B G 2003 Acta Phys. Sin. 52 0722 (in Chinese)
[18]Asti G, Ghidini M, Pellicelli R, Pernechele C, Solzi M, Albertini F, Casoli F, Fabbrici S and Pareti L 2006 Phys. Rev. B 73 094406
[19]Zhao H W, Rong C B, Zhang S Y and Shen B G 2004 Acta Phys. Sin. 53 4347 (in Chinese)
[20]Zhao G P, Wang X L, Yang C, Xie L H and Zhou G 2007 J. Appl. Phys. 101 09K102
[21]Xian C W, Zhao G P, Zhang Q X and Xu J S 2009 Acta Phys. Sin. 58 3509 (in Chinese)
[22]Livesey K L, Crew D C and Stamps R L 2006 Phys. Rev. B 73 184432
[23]Xia J, Zhang X C and Zhao G P 2013 Acta Phys. Sin. 62 227502 (in Chinese)
[24]Chen C W and Xiang Y 2016 Acta Phys. Sin. 65 127502 (in Chinese)
[25]Deng Y, Zhao G P and Bo N 2010 Acta Phys. Sin. 60 037502 (in Chinese)
[26]Tang J, Ma B, Zhang Z Z and Jin Q Y 2010 Chin. Phys. Lett. 27 075502
[27]Hu X and Kawazoe Y 1994 Phys. Rev. B 49 3294
[28]Hu X and Kawazoe Y 1995 Phys. Rev. B 51 311
[29]Hu X 1997 Phys. Rev. B 55 8382
[30]Yorozu T and Hu X 1998 J. Appl. Phys. 84 3278
[31]Brown W F 1945 Rev. Mod. Phys. 17 15
[32]Thiaville A and Fert A 1992 J. Magn. Magn. Mater. 113 161
[33]Skomski R 2012 {it Simple Models of Magnetism} (London: Oxford)
[34]Stoner E C and Wohlfarth E P 1948 Philos. Trans. R. Soc. London Ser. A 240 599
Related articles from Frontiers Journals
[1] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 067504
[2] Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song. Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures[J]. Chin. Phys. Lett., 2022, 39(4): 067504
[3] Jiahao Liu, Zidong Wang, Teng Xu, Hengan Zhou, Le Zhao, Soong-Guen Je, Mi-Young Im, Liang Fang, and Wanjun Jiang. The 20-nm Skyrmion Generated at Room Temperature by Spin-Orbit Torques[J]. Chin. Phys. Lett., 2022, 39(1): 067504
[4] Huaixiang Wang, Jinghua Song, Weipeng Wang, Yuansha Chen, Xi Shen, Yuan Yao, Junjie Li, Jirong Sun, and Richeng Yu. Magnetic Anisotropy Induced by Orbital Occupation States in La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ Films[J]. Chin. Phys. Lett., 2021, 38(8): 067504
[5] Qingwei Fu, Kaiyuan Zhou, Lina Chen, Yongbing Xu, Tiejun Zhou, Dunhui Wang, Kequn Chi, Hao Meng, Bo Liu, Ronghua Liu, and Youwei Du. Field- and Current-Driven Magnetization Reversal and Dynamic Properties of CoFeB-MgO-Based Perpendicular Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2020, 37(11): 067504
[6] Jin Yang, Jian Li, Liangzhong Lin, and Jia-Ji Zhu. An Origin of Dzyaloshinskii–Moriya Interaction at Graphene-Ferromagnet Interfaces Due to the Intralayer RKKY/BR Interaction[J]. Chin. Phys. Lett., 2020, 37(8): 067504
[7] Yi Liu, Tao Yu, Zheng-Yong Zhu, Hui-Cai Zhong, Kai-Gui Zhu. Effects of MgO Thickness and Roughness on Perpendicular Magnetic Anisotropy in MgO/CoFeB/Ta Multilayers[J]. Chin. Phys. Lett., 2016, 33(10): 067504
[8] CHENG Ji-Hua, WANG Yin-Gang, XIE Dan. Interface Effects on the Magnetoelectric Properties of Magnetoelectric Multilayer Composites[J]. Chin. Phys. Lett., 2015, 32(01): 067504
[9] LUO Zhi-Yuan, TANG Jia, MA Bin, ZHANG Zong-Zhi, JIN Qing-Yuan, WANG Jian-Ping. Influence of Film Roughness on the Soft Magnetic Properties of Fe/Ni Multilayers[J]. Chin. Phys. Lett., 2012, 29(12): 067504
[10] LEI Jie-Mei, XU Xiao-Liang, LIU Ling, YIN Nai-Qiang, ZHU Li-Xin. Preparation and Characterization of Bimodal Magnetofluorescent Nanoprobes for Biomedical Application[J]. Chin. Phys. Lett., 2012, 29(9): 067504
[11] ZHOU Guang-Hong, **, ZHU Yu-Fu, LIN Yue-Bin . Thermal Decay and Reversal of Exchange Bias Field of CoFe/PtMn Bilayer after Ga+ Irradiation[J]. Chin. Phys. Lett., 2011, 28(5): 067504
[12] TANG Jia, MA Bin, ZHANG Zong-Zhi, JIN Qing-Yuan. Structural and Magnetic Properties of [Fe/Ni]N Multilayers[J]. Chin. Phys. Lett., 2010, 27(7): 067504
[13] HUANG Ming, ZHOU Yue-Qun, SHEN Ting-Gen. Left-Handed Effect of Composite Rectangular SRRs and Its Application in Patch Antennae[J]. Chin. Phys. Lett., 2010, 27(1): 067504
[14] FA Tao, XIANG Qing-Pei, YAO Shu-De. Fabrication of Co/CoO Exchange Bias System by Ion Implantation and Its Magnetic Properties[J]. Chin. Phys. Lett., 2009, 26(12): 067504
[15] LU Ran, FANG Xiao-Yong, KANG Yu-Qing, YUAN Jie, CAO Mao-Sheng. Microwave Absorption and Response Modeling of Nanocomposites Embedded SiC Nanoparticles[J]. Chin. Phys. Lett., 2009, 26(4): 067504
Viewed
Full text


Abstract