Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 067201    DOI: 10.1088/0256-307X/36/6/067201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Contactless Microwave Detection of Shubnikov–De Haas Oscillations in Three-Dimensional Dirac Semimetal ZrTe$_{5}$
Min Wu1,2†, Hongwei Zhang1,3†, Xiangde Zhu1, Jianwei Lu1,2, Guolin Zheng1,4, Wenshuai Gao5, Yuyan Han1, Jianhui Zhou1, Wei Ning1**, Mingliang Tian1,5
1Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031
2Department of Physics, University of Science and Technology of China, Hefei 230026
3Department of Physics, Shaanxi University of Science and Technology, Xi'an 710021
4School of Science, RMIT University, Melbourne, VIC 3001, Australia
5Department of Physics, School of Physics and Materials Science, Anhui University, Hefei 230601
Cite this article:   
Min Wu, Hongwei Zhang, Xiangde Zhu et al  2019 Chin. Phys. Lett. 36 067201
Download: PDF(1030KB)   PDF(mobile)(1009KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report Shubnikov–de Haas (SdH) oscillations of a three-dimensional (3D) Dirac semimetal candidate of layered material ZrTe$_{5}$ single crystals through contactless electron spin resonance (ESR) measurements with the magnetic field up to 1.4 T. The ESR signals manifest remarkably anisotropic characteristics with respect to the direction of the magnetic field, indicating an anisotropic Fermi surface in ZrTe$_{5}$. Further experiments demonstrate that the ZrTe$_{5}$ single crystals have the signature of massless Dirac fermions with nontrivial $\pi$ Berry phase, key evidence for 3D Dirac/Weyl fermions. Moreover, the onset of quantum oscillation of our ZrTe$_{5}$ crystals revealed by the ESR can be derived down to 0.2 T, much smaller than the onset of SdH oscillation determined by conventional magnetoresistance measurements. Therefore, ESR measurement is a powerful tool to study the topologically nontrivial electronic structure in Dirac/Weyl semimetals and other topological materials with low bulk carrier density.
Received: 24 January 2019      Published: 18 May 2019
PACS:  72.15.Gd (Galvanomagnetic and other magnetotransport effects)  
  71.55.Ak (Metals, semimetals, and alloys)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0401003, the National Natural Science Foundation of China under Grant Nos 11774353, 11574320, 11374302, 11804340, U1432251 and U1732274, the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology under Grant No 2018CXFX002, and the China Postdoctoral Science Foundation under Grant No 2018M630718.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/067201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/067201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Min Wu
Hongwei Zhang
Xiangde Zhu
Jianwei Lu
Guolin Zheng
Wenshuai Gao
Yuyan Han
Jianhui Zhou
Wei Ning
Mingliang Tian
[1]Wan X G, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[2]Weng H M, Dai X and Fang Z 2016 J. Phys.: Condens. Matter 28 303001
[3]Burkov A A 2016 Nat. Mater. 15 1145
[4]He L P, Hong X C, Dong J K, Pan J, Zhang Z, Zhang J and Li S Y 2014 Phys. Rev. Lett. 113 246402
[5]Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280
[6]Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X and Chen G F 2015 Phys. Rev. X 5 031023
[7]Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C and Yan B 2015 Nat. Phys. 11 645
[8]Yuan Z J, Lu H, Liu Y J, Wang J F and Jia S 2016 Phys. Rev. B 93 184405
[9]Xiong J, Kushwaha S K, Liang T, Krizan J W, Hirschberger M, Wang W, Cava R J and Ong N P 2015 Science 350 413
[10]Li C Z, Wang L X, Liu H, Wang J, Liao Z M and Yu D P 2015 Nat. Commun. 6 10137
[11]Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q and Wang J 2016 Nat. Commun. 7 10301
[12]Zhang C L, Xu S Y, Belopolski I, Yuan Z, Lin Z, Tong B, Bian G, Alidoust N, Lee C C, Huang S M, Chang T R, Chang G, Hsu C H, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J, Lin H, Zhang C, Lu H Z, Shen S Q, Neupert T, Hasan M Z and Jia S 2016 Nat. Commun. 7 10735
[13]Li Q, Kharzeev D E, Zhang C, Huang Y, Pletikosi? I, Fedorov A V, Zhong R D, Schneeloch J A, Gu G D and Valla T 2016 Nat. Phys. 12 550
[14]Zheng G L, Lu J W, Zhu X D, Ning W, Han Y Y, Zhang H W, Zhang J L, Xi C Y, Yang J Y, Du H F, Yang K, Zhang Y H and Tian M L 2016 Phys. Rev. B 93 115414
[15]Wu M, Zheng G L, Chu W W, Liu Y Q, Gao W S, Zhang H W, Lu J W, Han Y Y, Zhou J H, Ning W and Tian M L 2018 Phys. Rev. B 98 161110(R)
[16]Li H, Wang H W, He H, Wang J and Shen S Q 2018 Phys. Rev. B 97 201110(R)
[17]Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[18]Xu G, Weng H M, Wang Z J, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[19]Liang T, Lin J, Gibson Q, Gao T, Hirschberger M, Liu M, Cava R J and Ong N P 2017 Phys. Rev. Lett. 118 136601
[20]Liang T, Lin J, Gibson Q, Kushwaha S, Liu M, Wang W, Xiong H, Sobota J A, Hashimoto M, Kirchmann P S, Shen Z X, Cava R J and Ong N P 2018 Nat. Phys. 14 451
[21]Potter A C, Kimchi I and Vishwanath A 2014 Nat. Commun. 5 5161
[22]Moll P J W, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A and Analytis J G 2016 Nature 535 266
[23]Zheng G L, Wu M, Zhang H W, Chu W W, Gao W S, Lu J W, Han Y Y, Yang J Y, Du H F, Ning W, Zhang Y H and Tian M L 2017 Phys. Rev. B 96 121407(R)
[24]Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147
[25]Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821
[26]Analytis J G, McDonald R D, Riggs S C, Chu J H, Boebinger G S and Fisher I R 2010 Nat. Phys. 6 960
[27]Pariari A, Dutta P and Mandal P 2015 Phys. Rev. B 91 155139
[28]Hu J, Tang Z J, Liu J Y, Liu X, Zhu Y L, Graf D, Myhro K, Tran S, Lau C N, Wei J and Mao Z Q 2016 Phys. Rev. Lett. 117 016602
[29]Liu J Y, Hu J, Zhang Q, Graf D, Cao H B, Radmanesh S M A, Adams D J, Zhu Y L, Cheng G F, Liu X, Phelan W A, Wei J, Jaime M, Balakirev F, Tennant D A, DiTusa J F, Chiorescu I, Spinu L and Mao Z Q 2017 Nat. Mater. 16 905
[30]Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F and Wang N L 2015 Phys. Rev. Lett. 115 176404
[31]Chen R Y, Zhang S J, Schneeloch J A, Zhang C, Li Q, Gu G D and Wang N L 2015 Phys. Rev. B 92 075107
[32]Omling P, Meyer B and Emanuelsson P 1991 Appl. Phys. Lett. 58 931
[33]Linke H, Omling P, Ramvall P, Meyer B K, Drechsler M, Wetzel C, Rudeloff R and Scholz F 1993 J. Appl. Phys. 73 7533
[34]Linke H, Kowalski B, Ramvall P, Emanuelsson P, Omling P, Oettinger K, Drechsler M and Meyer B K 1993 Appl. Phys. Lett. 62 2725
[35]Drabinska A, Wo?os A, Kaminska M, Strupinski W and Baranowski J M 2012 Phys. Rev. B 86 045421
[36]Wolos A, Szyszko S, Drabinska A, Kaminska M, Strzelecka S G, Hruban A, Materna A and Piersa M 2012 Phys. Rev. Lett. 109 247604
[37]Shestakov A V, Fazlizhanov I I, Yatsyk I V, Gilmutdinov I F, Ibragimova M I, Shustov V A and Eremina R M 2018 J. Semicond. 39 052001
[38]Kamm G N, Gillespie D J, Ehrlich A C, Wieting T J and Levy F 1985 Phys. Rev. B 31 7617
[39]Weng H M, Dai X and Fang Z 2014 Phys. Rev. X 4 011002
[40]McIlroy D N, Moore S, Zhang D, Wharton J, Kempton B, Littleton R, Wilson M, Tritt T M and Olson C G 2004 J. Phys.: Condens. Matter 16 L359
[41]Zheng G L, Zhu X D, Liu Y Q, Lu J W, Ning W, Zhang H W, Gao W S, Han Y Y, Yang J Y, Du H F, Yang K, Zhang Y H and Tian M L 2017 Phys. Rev. B 96 121401(R)
[42]Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press)
[43]Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490
Related articles from Frontiers Journals
[1] Yu Bai, Zhe Wang, Na Lei, Wisal Muhammad, Lifeng Xiang, Qiang Li, Huilin Lai, Yinyan Zhu, Wenbing Wang, Hangwen Guo, Lifeng Yin, Ruqian Wu, and Jian Shen. Enhanced Anomalous Hall Effect of Pt on an Antiferromagnetic Insulator with Fully Compensated Surface[J]. Chin. Phys. Lett., 2022, 39(10): 067201
[2] Qin Chen, Yuxing Zhou, Binjie Xu, Zhefeng Lou, Huancheng Chen, Shuijin Chen, Chunxiang Wu, Jianhua Du, Hangdong Wang, Jinhu Yang, and Minghu Fang. Large Magnetoresistance and Nontrivial Berry Phase in Nb$_3$Sb Crystals with A15 Structure[J]. Chin. Phys. Lett., 2021, 38(8): 067201
[3] Ling-Xiao Zhao, Xiao-Chun Huang, Yu-Jia Long, Dong Chen, Hui Liang, Zhan-Hai Yang, Mian-Qi Xue, Zhi-An Ren, Hong-Ming Weng, Zhong Fang, Xi Dai, Gen-Fu Chen. Anomalous Magneto-Transport Behavior in Transition Metal Pentatelluride HfTe$_{5}$[J]. Chin. Phys. Lett., 2017, 34(3): 067201
[4] ZHENG Ping, CHEN Gen-Fu, LI Zheng, HU Wan-Zheng, DONG Jing, LI Gang, WANG Nan-Lin, LUO Jian-Lin. Magnetoresistance in Parent Pnictide AFe2As2(A=Sr, Ba)[J]. Chin. Phys. Lett., 2009, 26(10): 067201
[5] DAI Bo, LIU Xiao-Xia, LEI Yong, Alain Nogaret. Magnetoresistance of Electrons Channelled by Microscopic Magnetic Field Modulation[J]. Chin. Phys. Lett., 2009, 26(3): 067201
[6] SHENG Lei-Mei, GAO Wei, CAO Shi-Xun, ZHANG Jin-Cang. Magnetoresistance of Multiwalled Carbon Nanotube Yarns[J]. Chin. Phys. Lett., 2008, 25(9): 067201
[7] WANG Zhi-Ming, XING Ding-Yu, ZHANG Shi-Yuan, XU Qing-Yu, Margriet VanBael, DU You-Wei. Magnetic-Field-Induced Semimetal-Insulator-like Transition in Highly Oriented Pyrolitic Graphite[J]. Chin. Phys. Lett., 2007, 24(1): 067201
[8] XIONG Jian-Wen, HU Liang-Bin, ZHANG Zhen-Xi. Suppression of Direct Spin Hall Currents in Two-Dimensional Electronic Systems with both Rashba and Dresselhaus Spin-Orbit Couplings[J]. Chin. Phys. Lett., 2006, 23(5): 067201
[9] ZHANG Ying, GAO Ben-Qing. Propagation of Cylindrical Waves in Media of Time-Dependent Permittivity[J]. Chin. Phys. Lett., 2005, 22(2): 067201
[10] Jian-Qing WANG$, Jordan Peck, Finnobarr O’Grady, Nam Kim. Unified Understanding of Giant Magnetoresistance Effect and Magnetization in Granular Films with Two-Particle Size Distribution[J]. Chin. Phys. Lett., 2004, 21(11): 067201
[11] LIU Ning, SUN Yang, ZHANG Yu-Heng. Mechanism of Insulator-Metal Transition in La2/3 Ca1/3MnO3:Collapse of Small Polaron [J]. Chin. Phys. Lett., 2001, 18(7): 067201
[12] XU Qing-Yu, NI Gang, WANG Zhi-Ming, SANG Hai, DU You-Wei. Hall Effect of (Co0.34Fe0.66)0.42(SiO2)0.58 Granular Films[J]. Chin. Phys. Lett., 2001, 18(5): 067201
[13] XU Hui-ying, YU Wen-xue, KANG Jian, MAI Zhen-hong. Asymmetrical Spin-Polarized Tunneling in a Composed-Barrier Magnetic Tunnel Junctions Under the Forward and Reverse Biases[J]. Chin. Phys. Lett., 1999, 16(12): 067201
[14] WANG Jing-hua, CHEN Ting-yong, WU Jian-hua, DAI Dao-sheng, NIE Jia-cai, ZHAO Bai-ru. Colossal Magnetoresistance of Polycrystalline (La0.7Tb0.3)2/3Cal/3MnO3 at Low Drive Field[J]. Chin. Phys. Lett., 1999, 16(8): 067201
[15] WEI Lian-fu, WANG Shun-jin, JIA Huan-yu, JIE Quan-lin. Fano Resonance and Persistent Currents in a Mesoscopic Open Ring with a Flux Loop in Side-Branch[J]. Chin. Phys. Lett., 1998, 15(2): 067201
Viewed
Full text


Abstract