Chin. Phys. Lett.  2019, Vol. 36 Issue (5): 057201    DOI: 10.1088/0256-307X/36/5/057201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Absorption Enhancement of Silicon Solar Cell in a Positive-Intrinsic-Negative Junction
Gen Yue1,2, Zhen Deng1, Sen Wang1,2, Ran Xu1,2, Xinxin Li1,2, Ziguang Ma1, Chunhua Du1, Lu Wang1, Yang Jiang1, Haiqiang Jia1, Wenxin Wang1, Hong Chen1,2,3**
1Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049
3Songshan Lake Materials Laboratory, Dongguan 523808
Cite this article:   
Gen Yue, Zhen Deng, Sen Wang et al  2019 Chin. Phys. Lett. 36 057201
Download: PDF(491KB)   PDF(mobile)(487KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Absorption coefficient is a physical parameter to describe electromagnetic energy absorption of materials, which is closely related to solar cells and photodetectors. We grow a series of positive-intrinsic-negative (PIN) structures on silicon wafer by a gas source molecule beam epitaxy system and the investigate the absorption coefficient through the photovoltaic processes in detail. It is found that the absorption coefficient is enhanced by one order and can be tuned greatly through the thickness of the intrinsic layer in the PIN structure, which is also demonstrated by the 730-nm-wavelength laser irradiation. These results cannot be explained by the traditional absorption theory. We speculate that there could be some uncovered mechanism in this system, which will inspire us to understand the absorption process further.
Received: 21 March 2019      Published: 17 April 2019
PACS:  72.80.Cw (Elemental semiconductors)  
  78.66.Db (Elemental semiconductors and insulators)  
  84.60.Jt (Photoelectric conversion)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11574362
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/5/057201       OR      https://cpl.iphy.ac.cn/Y2019/V36/I5/057201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Gen Yue
Zhen Deng
Sen Wang
Ran Xu
Xinxin Li
Ziguang Ma
Chunhua Du
Lu Wang
Yang Jiang
Haiqiang Jia
Wenxin Wang
Hong Chen
[1]Bequerel E 1839 Acad. Sci. 9 145
[2]Hammond L 1977 Science 197 445
[3]Brabec C J 2004 Sol. Energy Mater. Sol. Cells 83 273
[4]Kippelen B and Bredas J L 2009 Energy Environ. Sci. 2 251
[5]Bijleveld J C, Zoombelt A P, Mathijssen S G J et al 2009 J. Am. Chem. Soc. 131 16616
[6]Lin D F, Quan B G, Zhang Q L et al 2016 Chin. Phys. Lett. 33 094207
[7]Liu M Z, Johnston M B and Snaith H J 2013 Nature 501 395
[8]Dai S Y and Wang K J 2003 Chin. Phys. Lett. 20 953
[9]Scharber M C, Wuhlbacher D, Koppe M et al 2006 Adv. Mater. 18 789
[10]Jeyaraman A R, Balasingam S K, Lee C et al 2019 Mater. Lett. 243 180
[11]Cohen M L and Chelikowsky J R 1988 Electronic Structure, Optical Properties of Semiconductor (Berlin: Springer)
[12]Zhang Z M 2007 Nano/Microscale Heat Transfer (New York: McGraw-Hill)
[13]Ferry V E and Verschuuren M A 2011 Nano Lett. 11 4239
[14]Jang J, Kim M and Kim Y 2014 Curr. Appl. Phys. 14 637
[15]Kar D and Das D 2015 RSC Adv. 5 61118
[16]Kumar P, Pfeffer M, Willsch B et al 2017 Sol. Energy Mater. Sol. Cells 160 398
[17]Sun L, Wang L, Liu J et al 2018 Superlattices Microstruct. 122 80
[18]Aspnes D E and Studna A A 1983 Phys. Rev. B 27 985
[19]Herzinger C M, Johs B, McGahan W A, Woollam J A et al 1998 J. Appl. Phys. 83 3323
[20]Lee B J, Zhang Z M, Early E A et al 2005 J. Thermophys. Heat Transfer 19 558
[21]Wang H and Liu X L 2013 Int. J. Thermophys. 34 213
Related articles from Frontiers Journals
[1] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 057201
[2] Junkang Li, Yiming Qu, Siyu Zeng, Ran Cheng, Rui Zhang, Yi Zhao. Ge Complementary Tunneling Field-Effect Transistors Featuring Dopant Segregated NiGe Source/Drain[J]. Chin. Phys. Lett., 2018, 35(11): 057201
[3] Filippov V. V., Mitsuk S.V.. Modelling Magnetoresistance Effect in Limited Anisotropic Semiconductors[J]. Chin. Phys. Lett., 2017, 34(7): 057201
[4] FILIPPOV V. V., VLASOV A. N.. Express Methods for Measurement of Electroconductivity of Semiconductor Layered Crystal[J]. Chin. Phys. Lett., 2015, 32(11): 057201
[5] MA Xue-Zhi, ZHANG Rui, SUN Jia-Bao, SHI Yi, ZHAO Yi. Reduction of Reactive-Ion Etching-Induced Ge Surface Roughness by SF6/CF4 Cyclic Etching for Ge Fin Fabrication[J]. Chin. Phys. Lett., 2015, 32(4): 057201
[6] YUAN Heng, ZHANG Ji-Xing, ZHANG Chen, ZHANG Ning, XU Li-Xia, DING Ming, Patrick J. Clarke. Low Gate Voltage Operated Multi-emitter-dot H+ Ion-Sensitive Gated Lateral Bipolar Junction Transistor[J]. Chin. Phys. Lett., 2015, 32(02): 057201
[7] WANG Hong-Juan, HAN Gen-Quan, LIU Yan, YAN Jing, ZHANG Chun-Fu, ZHANG Jin-Cheng, HAO Yue. Germanium PMOSFETs with Low-Temperature Si2H6 Passivation Featuring High Hole Mobility and Superior Negative Bias Temperature Instability[J]. Chin. Phys. Lett., 2014, 31(05): 057201
[8] ZHANG Li-Ning, MEI Jin-He, ZHANG Xiang-Yu, TAO Jin, HU Yue, HE Jin, CHAN Mansun. A Comparative Study of Ballistic Transport Models for Nanowire MOSFETs[J]. Chin. Phys. Lett., 2013, 30(11): 057201
[9] DENG Ning, TANG Jian-Shi, ZHANG Lei, ZHANG Shu-Chao, CHEN Pei-Yi. Spin Injection from Ferromagnetic Metal Directly into Non-Magnetic Semiconductor under Different Injection Currents[J]. Chin. Phys. Lett., 2010, 27(9): 057201
[10] XU Yue, YAN Feng, CHEN Dun-Jun, SHI Yi, WANG Yong-Gang, LI Zhi-Guo, YANG Fan, WANG Jos-Hua, LIN Peter, CHANG Jian-Guang. Improved Programming Efficiency through Additional Boron Implantation at the Active Area Edge in 90nm Localized Charge-Trapping Non-volatile Memory[J]. Chin. Phys. Lett., 2010, 27(6): 057201
[11] JIANG Ruolian, LIU Jianlin, ZHENG Youdou*, ZHENG Guozhen*, WEI Yayi*, SHEN Xuechu*. High Hole Mobility Si/Sil-xGex/Si Heterostructure[J]. Chin. Phys. Lett., 1994, 11(2): 057201
[12] LI Jianming. NOVEL SEMICONDUCTOR SUBSTRATE FO-D BY HYDROGEN ION IMPLANTATION INTO SILICON [J]. Chin. Phys. Lett., 1989, 6(10): 057201
Viewed
Full text


Abstract